您的当前位置:首页论钢筋混凝土结构设计的热点问题

论钢筋混凝土结构设计的热点问题

2022-11-03 来源:小侦探旅游网


论钢筋混凝土结构设计的热点问题

摘要:随着我国高层建筑的迅速发展,多层钢筋混凝土框架结构越来越广泛应用于建筑中。在合理的高度和层数的情况下,框架结构能够提供较大的建筑空间,其平面布置灵活,可适合多种工艺与使用功能的要求。但是,在框架结构设计中,仍然存在着一些实际性的问题,以下本文对多层钢筋混凝土在框架结构设计中遇到的问题展开分析研究,以供同行参考。

关键词:土木工程;高层建筑;结构设计;热点问题

Abstract: along with the rapid development of high buildings, multilayer reinforced concrete frame structure is more and more widely used in construction. In the reasonable height and layer, frame structure can provide larger building space, the layout flexible, fit a variety of technology and use function requirements. But, in the frame structure design, still exist some practical problems, the following this paper of multilayer reinforced concrete frame structure design in the paper analyses the problems in the research and provide the reference for colleague.

Keywords: civil engineering; High-rise buildings; Structure design; Hot issues

1、钢筋混凝土框架结构设计方法的综述

自钢筋混凝土框架结构在土木工程中出现以来,随着生产实践的经验积累和科学研究的不断进步,钢筋混凝土框架结构的设计方法在不断的发展和完善,先后经历了容许应力设计方法、破损阶段设计方法和极限状态设计方法。容许应力法以线弹性设计方法为基础,要求在使用荷载作用下构件截面的应力不大干容许应力,截面应力按线弹性设计方法求出,容许应力是用材料的强度除以安全系数求得。容许应力法仅考虑材料的弹性性质,容许应力取值也无科学依据,框架结构设计是否安全可靠无法用实验来验证。破损阶段法以塑性设计方法为基础,要求在使用荷载作用下构件截面的内力不大于破坏时内力除以某一安全系数,破损阶段法使构件有了总的安全度的概念,可以说它开创了一个新局面。但它仍存在一些重大的缺点:只保证了构件的强度,但却无法了解构件正常使用是否满足要求;安全系数取值仍须经验,并无严格科学依据;单一安全系数不能对不同荷载、材料、构件区别对待,从而正确地度量框架结构的安全度。极限状态法是破损阶段的发展,它规定了框架结构的极限状态,并把单一安全系数改为三个分项系数,即荷载系数、材料系数和工作系数,从而把不同荷载、材料、构件区别对待,使构件具有比较一致的安全度。

从本质上讲,破损阶段设计法和极限状态设计法中的承载力极限状态设计所依据的都是极限强度设计方法。极限强度设计方法的基本原则是求出截面破坏时的极限承载力,然后控制截面在使用荷载作用下的内力不大于破坏时的极限承载力除以某个考虑安全的系数。系数可用单一系数,即破损阶段法;也可用分项系

数,即极限状态法。随着可靠度设计方法的发展,安全系数的取值已经从传统的定值设计法发展到今天的半概率设计法,又在向近似概率设计法发展,使框架结构设计的极限状态设计方法向更完善、更科学的方向发展。但是,只有框架结构的极限承载力得以准确评估后,框架结构安全系数更为精确、科学的取值才会更有意义,框架结构安全度才能得到充分保证。

2 钢筋混凝土框架结构设计时正确选取结构参数

2.1 选取设计基本地震加速度

《建筑抗震设计规范》3.2.2条中规定:抗震设防烈度为Ⅶ度时,设计基本地震加速度值分别为0.1g和0.15g两种,抗震设防烈度为Ⅷ度时,设计基本地震加速度值分别为0.2g和0.3g两种,这与89旧规范差别较大。计算中应严格注意地震区的划分,选取正确的设计基本地震加速度值,这一项对地震作用效应的影响极大。

2.2 地震力振型组合数

对于较高层建筑,当不考虑扭转耦联时,振型数应不小于3;当振型数多于3时,宜取为3的倍数,但不能多于层数;当房屋层数不大于2时,振型数可取层数,对于不规则建筑,当考虑扭转耦联时,振型数应不小于9;结构层数较多或结构刚度突变较大时,振型数应多取,如结构有转换层,顶部有小塔楼等,振型数应大于12或更多,但不能多于房屋层数的3倍;只有定义弹性楼板且按总刚分析法分析, 有必要时才可以取更多的振型。

2.3 结构周期折减系数

框架结构由于填充墙的存在,使结构的实际刚度大于计算刚度,计算周期大于实际周期,因此,算出的地震作用效应偏小,使结构偏于不安全,因而对结构的计算周期进行折减是必要的,但如果折减系数取得过大也是不妥当的。对于框架结构来说,采用砌体填充墙时,周期折减系数可根据填充墙的材料及数量选取0.6~0.7;砌体填充墙较少或采用轻质砌块时,可取0.9;无墙的纯框架,计算周期可以不折减。

2.4 梁刚度放大系数

结构设计计算软件的输入模型均为矩形截面,未考虑因存在楼板形成T型截面而引起的刚度增大,造成结构的实际刚度大于计算刚度,算出的地震剪力偏小,使结构偏于不安全,因此计算时应将梁刚度进行放大,放大系数中梁取2.0,边梁取1.5为宜。

3 框架结构构造配筋

3.1 框架外挑梁配筋

由于占地面积的限制,使用功能的要求或结构上的原因,工程上常在框架的梁端设计挑梁。由于框架梁的荷载与外挑梁的实际荷载值不同,因而框架梁与外挑梁的断面尺寸会有所不同,而有的设计人员在绘图时只是将框架梁上的某些主筋向外挑梁延伸,殊不知有些主筋根本无法伸进挑梁,这些差错一般在施工时才会暴露出来,但为时已晚。许多钢筋已截断成型,这不仅影响了施工进度,而且也造成了不必要的损失。框架梁外挑梁下常设置钢筋混凝土柱。在柱的内力和配筋计算中,有些设计人员对其受力概念不清,误认为此为构造柱,并且其配筋为构造配筋,悬臂梁也未按计算配筋,这样有可能导致水平荷载作用下承载力不足,为事故的发生埋下隐患。

3.2 框架边柱柱顶配筋

对于框架结构的高层建筑,水平荷载对结构的倾覆力矩以及由此在竖向构件中所引起的轴力与建筑高度的平方成,正比;顶点位移与建筑高度的4次方成正比,水平荷载是结构设计中的控制因素,框架顶层的风荷载较大,而屋面结构荷重传给边柱的轴向总力比楼层边柱总力要小,显然柱顶有大偏心问题顶层边柱节点出现轴向力对截面重心的偏心距大于0.5倍的柱截面高度(e0>O.5h)。根据框架结构的构造要求,横梁上部钢筋应全部伸入柱内,且伸过横梁下边;柱内一部分钢筋伸到顶端,另一部分钢筋伸到横梁内,其根数依据计算确定且不少于2根,设计人员在图中经常容易将边柱柱角的钢筋弯入梁内,对这类问题,缺乏实践经验的工程技术人员不易立即发现,而要等施工时才会察觉。问题的症结在于柱宽大于梁宽,柱角的纵筋要完全伸入梁内是办不到的,对这种差错应引起设计人员的重视。

3.3 框架梁、柱箍筋配置

根据《建筑抗震设计规范》第6.3.3条及6.3.8条规定,工程习惯上常取的粱、柱箍筋加密区最大间距为100mm,非加密区箍筋最大间距为200mm。电算程序信息中通常也内定梁、柱箍筋加密区间距为100mm,由设计人员根据规范确定箍筋直径和肢数。当框架梁中由于种种原因纵向钢筋超筋时,梁端适当加大抗剪承载力对结构抗震非常有利,这也是当梁端纵向受拉钢筋配筋率大于2%时,规范规定梁的箍筋直径应比最小构造直径增大2mm的原因。对于框架柱,当框架内定柱加密区箍筋间距为100mm时,在某些情况下,亦可能因非加密区箍筋间距采用200mm引起配箍不足。这里需要指出的是,梁、柱箍筋非加密区配箍验算时可不考虑强剪弱弯的要求,即剪力设计值取加密区终点处外侧的组合剪力设计值,并且不乘以剪力增大系数。

4 多层框架结构设计要求

4.1 强柱弱梁节点设计

这是为了实现在罕遇地震作用下,让梁端形成塑形铰,柱端处于非弹性工作状态,而没有屈服,但节点还处于弹性工作阶段。强柱弱梁措施的强弱,也就是

相对于梁端截面实际抗弯能力而言柱端截面抗弯能力增强幅度的大小,是决定由强震引起柱端截面屈服后塑性转动能否不超过其塑性转动能力,而且不致形成“层侧移机构”,从而使柱不被压溃的关键控制措施,柱强于梁的幅度大小取决于梁端纵筋不可避免的构造超配程度的大小,以及结构在梁、柱端塑性铰逐步形成过程中的塑性内力重分布和动力特征的相应变化,因此,当建筑许可时,尽可能将柱的截面尺寸做得大些,使柱的线刚度与梁的线刚度的比值尽可能大于1,并控制柱的轴压比满足规范要求,以增加延性。验算截面承载力时,人为地将柱的设计弯矩按强柱弱梁原则调整放大,加强柱的配筋构造。梁端纵向受拉钢筋的配筋不得过高,以免在罕遇地震中进入屈服阶段不能形成塑性铰或塑性铰转移到立柱上。注意节点构造,让塑性铰向梁跨内移。

4.2 强剪弱弯剪力墙设计

为了提高抗震墙的变形能力,避免发生剪切破坏,对于一道截面较长的抗震墙,应该利用洞口设置弱连梁,使墙体分为小开口墙、多肢墙或单肢墙,并使每个墙段的高宽比不小于2。所谓弱连梁,是指在地震作用下各层连梁的总约束弯矩不大于该墙段总地震弯矩的20%;连梁不能太强,以免水平地震作用下某个墙肢出现全截面受拉,这是比较危险的。但是,考虑到耗能,连梁又不能太弱,连梁弱到成为一般小梁时,墙肢就变成单肢墙,而单肢墙的延性很差,仅为多肢墙的一半,且单肢墙仅具有一道抗震防线,超静定次数少,在地震作用下是很不利的,目前,有许多设计人员将结构中门洞连梁、窗洞连梁都改为截面高度极小的二力杆件,这对结构抗震是很不好的。在实际设计中,对连梁的刚度都要进行折减,这是因为剪力墙的刚度一般都很大,在水平力作用下,剪力墙中的连梁会因为很大的内力而超过截面允许值,可靠的办法是让这些连梁先屈服,要使连梁能形成塑性铰而不发生脆性破坏,连梁首先就必须满足强剪弱弯的要求,对连梁的刚度进行折减实际上就是降低其抗弯能力。

5 结束语

钢筋混凝土结构是由钢筋和混凝土两种性质截然不同的材料组成的,因其具有诸多的优点而广泛应用于土木工程中。随着高层建筑结构设计理念的不断创新,要设计出安全、适用的优秀作品,结构设计人员必须熟练掌握规范,遵循各种大胆、灵活的解决结构方案上的难题,并不断学习总结,以确保结构设计质量。

注:文章内所有公式及图表请用PDF形式查看。

因篇幅问题不能全部显示,请点此查看更多更全内容