您的当前位置:首页R软件基础知识

R软件基础知识

来源:小侦探旅游网
1+1

library(rattle) rattle() x

x[50:60] #matrix

y<-matrix(1:6,nrow=2) ?matrix ??matrix

y<-matrix(1:6,nrow=2,byrow=TRUE) set.seed(42)

x<-rnorm(100,mean=1,sd=2)

??students x=rt(400, 6)

matrix(x,nrow=100)

#Input data. 导入CSV格式数据

weather<-read.csv(\"d:\\\\weather.csv\") weather

head(weather) tail(weather)

str(weather) #数据结构 weather$RainTomorrow

table(weather$RainTomorrow) summary(weather$RainTomorrow) summary(weather$MinTemp) mean(weather$MinTemp) var(weather$MinTemp) sd(weather$MinTemp)

table(weather$RainToday,weather$RainTomorrow)

#画图

plot(weather$MinTemp)

plot(weather$MinTemp,type=\"l\")

plot(as.Date(weather$Date),weather$MinTemp,type=\"l\") plot(table(weather$RainToday,weather$RainTomorrow)) barplot(table(weather$RainTomorrow))

hist(weather$Pressure3pm) #气压柱状(直方)图

plot(density(weather$Pressure3pm)) #气压密度函数图

boxplot(weather$RainTomorrow,weather$Pressure3pm) #气压和明天下雨的关系

boxplot(weather$Pressure3pm) #气压的盒壮图 #model.建模

plot(weather$Pressure3pm,weather$MinTemp)

cor(weather$Pressure3pm,weather$MinTemp) #相关系数

weatherLM<-lm(weather$MinTemp ~ weather$Pressure3pm) #一元线型回归模型 summary(weatherLM)

library(lattice)

xyplot(weather$MinTemp ~

weather$Pressure3pm,type=c(\"p\

在聚类程序后添加:

weatherKMEANS$model$center

决策树:

导入数据,选model,执行即可

(可用于判断是否疏解),点draw画出决策树

因篇幅问题不能全部显示,请点此查看更多更全内容