您的当前位置:首页Reasoning about the Interaction of Knowlege, Time and Concurrent Actions in the Situation C

Reasoning about the Interaction of Knowlege, Time and Concurrent Actions in the Situation C

来源:小侦探旅游网
ReasoningabouttheInteractionofKnowlege,TimeandConcurrentActionsinthe

SituationCalculus

RichardB.Scherl

ComputerScienceDepartment

MonmouthUniversityWestLongBranch,NewJersey

07764-1898U.S.A.rscherl@monmouth.edu

Abstract

Aformalframeworkforspecifyinganddevelopingagents/robotsmusthandlenotonlyknowledgeandsensingactions,butalsotimeandconcurrency.Re-searchershaveextendedthesituationcalculustohandleknowledgeandsensingactions.Otherre-searchershaveaddressedtheissueofaddingtimeandconcurrentactions.Herebothofthesefea-turesarecombinedintoaunifiedlogicaltheoryofknowledge,sensing,time,andconcurrency.There-sultpreservesthesolutiontotheframeproblemofpreviouswork,maintainsthedistinctionbetweenindexicalandobjectiveknowledgeoftime,andiscapableofrepresentingthevariouswaysinwhichconcurrencyinteractswithtimeandknowledge.Furthermore,amethodbasedonregressionisde-velopedforsolvingtheprojectionproblemforthe-oriesspecifiedinthisversionofthesituationcalcu-lus.

Furthermore,specificationofanagent’sabilitytoachieveagoalingeneralinvolvesrequiringthattheagentknowwhattodotoarriveatagoalstate[Moore,1980;Lesp´eranceetal.,2000].Astheabilitytoachieveparticulargoalswillofteninvolvetheabilitytoperformconcurrentactions,theintegra-tionofknowledgeandconcurrencyisanimportantstepinfullyformalizingtheseaspectsofability.

Wedevelopourframeworkwithinthesituationcalcu-lus–afirst-orderformalismforrepresentingandreasoningabouttheeffectsofactions.ThelanguageisbaseduponthedialectofthesituationcalculususedintheCognitiveRoboticsGroupattheUniversityofToronto.Certainly,an-otherformalismcouldhavebeenused.WithinA.I.numer-ousvaryingformalismsareavailablefornrepresentingandreasoningaboutaction(tonameafew,[Shanahan,1995;Baraletal.,1997]).Knowledgehasbeenincorporatedintoanumberofthese(forexample,[Loboetal.,2001;Thielscher,2000]).OutsideofA.I.proper,thereisalso[Fa-ginetal.,1995]ontheinteractionofknowledgeandtime.Butbyworkinginthesituationcalculus,weareabletoextendpreviousworkonreasoning(byregressionandtheo-remproving)tocoverthelanguagedevelopedhereaswell.Furthermore,ourworkissuitabletobeincorporatedintotherobotprogramminglanguagesGOLOGandCONGOLOG.Itcanthenbeusedtospecifyagentsthatmustreasonabouttheinteractionsoftime,knowledge,andconcurrentactions(in-cludingsensingactions).

Thesituationcalculus[McCarthyandHayes,1969]isalanguageformodelingdynamicallychangingworlds.Changestotheworldaretheresultsofactions,whilepos-sibleworldhistoriesconsistingofsequencesofactionsarerepresentedbysituations.Thesituationcalculuscanbeusedforagentplanningviagoalregression.Reiter[Reiter,1991]proposedasimplesolutiontotheframeproblem,anapproachtoaxiomatizationwithinthesituationcalculus.Al-thoughthisapproachtotheframeproblemrequirescertainsimplifyingassumptions,ithasproventobeusefulandisthefoundationforbothgoalregressionandtheprogramminglan-guageGOLOG.GoalregressionwasextendedbyScherlandLevesque[ScherlandLevesque,2003]toapplytoanagentwhocansensepropertiesoftheexternalworld(e.g.,readnumbersonapieceofpaperordeterminetheshapeofanobject).

1Introduction

Theaimofthispaperistodevelopaunifiedapproachforaxiomatizingtheinteractionofknowledge,sensing,time,andconcurrency.Actionshavepreconditionswhichmayincludeknowledgepreconditions.Sensingactionsalterknowledge.Theknowledgeproduceddependsupontherelativetimeatwhichsensingactionsoccurandalsowhetherornotothersortsofactionsoccurconcurrently.Allofthisinteractswiththeagent’sevolvingknowledgeoftime.

Considerarobotgatheringknowledgeaboutitsenviron-ment.Itmovesaboutwhileconcurrentlypanningthecameraandatvariouspointssensestheenvironmentforthepresenceofobjectswithvariouscharacteristics.Theknowledgeob-tainedthroughsensing(positionsofobjectsofvarioussizes,shapesandcolors)dependsuponthepositionoftherobotataparticularpointintime,theangleofthecamera,etc.Formanypurposes,theresultsofsensingactionsthatoccuratthesametimeareimportant.Notonlydowehavetheneedfortwodistinctconcurrentsensingactionsinbinocularstereop-sis,butalsointhesimultaneoususeofotherfeaturessuchastexturegradientsandshadingtoachieveknowledgeofdepthrelationships.Hereitisrelative,notabsolutetime,thatisimportant.

Thispaper1[combinesandextendstheworkofScherlandLevesqueScherlandLevesque,2003]incorporatingthemodelofconcurrencyandtimepresentedbyReiter[Re-iter,2001].Atthesametime,Reiter’ssimplesolutiontotheframeproblemispreserved.Therealdifficultyistoper-formthesynthesisinsuchawaythattheimportantdistinc-tionbetweenindexicalandobjectivetime[Lesp´eranceandLevesque,1995]ispreserved.

Iftheagentcurrentlyknowstheabsolutetime,thenheknowstheabsolutetimeafterexecutinganaction.Butifhedoesn’tknowtheabsolutetime,thenheonlyknowsthathebeganexecutingtheactionsomenumberoftimeunitsago,unlessofcoursehereadsaclock.Whilemaintainingtheseproperties,theresultspresentedhereallowtherepresentationofthevariouswaysinwhichactions(includingsensingac-tionsandpossiblyotherconcurrentactions)interactwithtimeandknowledge.Themethodofregressionisalsoextendedtoworkwiththisaugmentedlanguage.

Section2givesaquickintroductiontothesituationcalcu-lusandSection3doesthesameforthefoundationalaxioms.Therepresentationofknowledgeandsensingactionsarecov-eredinSection4.Concurrencyisintegratedintotheframe-workinSection5.Section6coverssomeadditionalcon-structsofthelanguageandillustratestheirrepresentationalpower.Anumberofpropertiesoftheformulationaredis-cussedinSection7.RegressioniscoveredinSection8.Fi-nally,Section9istheconclusion.

2SituationCalculusandtheFrameProblem

Spacedoesnotpermitafullexpositionofthebackground

material[onthesituationcalculus.TheframeworkdevelopedinReiter,[2001]isfollowedandfulldetailsmaybefoundthereorinScherl,2003].Weassumethattheframeproblemhasbeenhandledbyutilizingsuccessorstateaxioms.

3FoundationalAxioms

Following[LinandReiter,1994;Reiter,2001]thefounda-tionalaxiomsforthesituationcalculusareutilized.Theseaxiomsprovideuswithadefinitionofs󰀉s󰀂,whichsaysthatthereisasequenceofzeroormoreexecutableactionsthatmovefromsituationstosituations󰀂.Again,spacedoesnotpermitfulldevelopmentofthismaterialhere.Fulldetailsmaybefoundin[Reiter,2001;Scherl,2003].

4AnEpistemicFluent

ScherlandLevesque[ScherlandLevesque,2003]adaptthestandardpossible-worldmodelofknowledgeto]thesituationcalculus,asfirstdonebyMoore[Moore,1980.Informally,onecanthinkoftherebeingabinaryaccessibilityrelationoversituations,whereasituations󰀂isunderstoodasbeingaccessiblefromasituationsifasfarastheagentknowsinsit-uations,hemightbeinsituations󰀂insifitistrueineverys󰀂accessible.Sofromsomethings,andconverselyisknownsomethingisnotknownifitisfalseinsomeaccessiblesitua-tion.

1

Anearlierversionofsomeofthisworkhasappearedin[Zim-merbaumandScherl,2000].

Totreatknowledgeasafluent,theyintroduceabinaryrela-tionK(s󰀂,s),readas“s󰀂isaccessiblefroms”andtreatitthesamewaywewouldanyotherfluent.Inotherwords,fromthepointofviewofthesituationcalculus,thelastargumenttoKistheofficialsituationargument(expressingwhatisknowninsituations),andthefirstargumentisjustanauxiliaryliketheyinBROKEN(y,s).2

ThenotationKnows(P(now),s)(readasPisknowninsituations)canthenbeintroducedasasanabbreviationforaformulathatusesK.Forexample

Knows(BROKENdef

→B(y,nows)󰀂,)s.

)=∀s󰀂K(s󰀂,s)

ROKEN(y,Thespecialindexicalnowisinstantiatedwithasituationvari-ableuponexpansion.

Theapproachalsohandlesactionsthatmakeknownthedenotationofaterm.Forthiscase,oneneedsthenotationKref(T(now),s)definedasfollows:

Kref(T(now),s)def

where=xdoes∃xKnowsnotappear(T(nowin)=x,s)

T.Ingeneral,theremaybemanyknowledge-producingac-tions,aswellasmanyordinaryactions.Tocharacterize[allofthese,wehave]followingthepresentationinScherlandLevesque,2003,afunctionSR(forsensingresult),andforeachactionα,asensing-resultaxiomoftheform:

SR(α(󰀜x),s)

=r≡φα(󰀜x,r,s)(1)

Thisresultis“YES”if“Q”istrueand“NO”otherwise.The

symbolsaregiveninquotestoindicatethattheyarenotflu-ents.ThesensingresultfunctionforSENSEQisaxiomatizedasfollows:

SR(SENSE∨(Qr,=s)“=r≡(r=“YES”∧Q(s))

NO”∧¬Q(s))(2)

Forordinaryactions,theSRresultisalwaysthesame,withthespecificresultnotbeingsignificant.Forexample,wecouldhave:

SR(PICKUP(x),s)

=r≡r=“OK”(3)

InthecaseofaREADwouldτactionthatmakesthedenotationofthetermτknown,wehave:

SR(READτ,s)

=r≡r=τ(s)(4)

Therefore,τhasthesamedenotationinallworldss󰀂󰀂suchthatK(s󰀂󰀂istrue.

,DO(READτ,s)),andsoKref(τ,DO(READτ,s))TheformofthesuccessorstateaxiomforKwithoutcon-currencyisasfollows:

K(s󰀂󰀂,((DO∃s(󰀂a,∧)ss󰀂󰀂))K=≡

DO(a,∧(s󰀂,s)∧s)Ps󰀂)

=OSS(a,a,s󰀂(5)

s󰀂)SR(a,SR()

TherelationKataparticularsituationDO(a,s)iscompletelydeterminedbytherelationatsandtheactiona.

2

NotethatusingthisconventionmeansthattheargumentstoKarereversedfromtheirnormalmodallogicuse.

5Concurrency

Asoriginallydefinedinthesituationcalculus[McCarthyandHayes,1969],actionshadtooccursequentially,withoneactioncompletedbeforeanothercouldbegin.Furthermore,therewasnofacilitytodealwiththecontinuouspassageoftime.Thiscontrastedwithotherformalismssuchastheeventcalculuswhichcouldnaturallyhandleconcurrentactionsandcontinuoustime.

5.1ConcurrencywithKnowledge

TheworkofPinto[Pinto,1994]andReiter[Reiter,2001]proposedanapproachtodealingwithconcurrency,naturalactionsandcontinuoustimewhilestill[maintainingtheso-lutiontotheframeproblem.ReiterReiter,2001]definedanewsortconcurrent,setsofsimpleactions.Variablesa,sorta󰀂,..concurrentrepresent.theInReiter’ssortactionsnotation,andthec,c󰀂time,...ofrepresentanaction’stheoccurrenceisthevalueofthataction’stemporalargument.ThusanactionhastheformA(󰀜x,t)andforeachactionanaxiomoftheformTIME(A(󰀜x,t))=tisrequiredtoindicatethetimeoftheaction.

Concurrentactionsaresetsofordinaryactionsthataretakentorepresentinstantaneousacts.Anactionwithdura-tionisrepresentedbytwoinstantaneousactions—astartac-tionandanendaction.Additionally,thefoundationalaxiomsaremodifiedtoruleoutthepossibilityofprioractionshavinglatertimes.

SoifwewanttorepresentaPRESSINGactionwithduration(asinpressingabuttonthatkeepsalighton),theapproachistodefinetwoactions;STARTPRESSandENDPRESS.WealsomustintroduceafluentPRESSING.Theneededsucces-sorstateaxiomisasfollows:

PRESSING(DO(a,s))≡

a=(STARTPRESSPRESSING(s)∨

∧a=ENDPRESS)

(6)

Thisapproachtorepresentingactionswithdurationissome-thingthatwemakeuseofhere.

But,theuseofatemporalargumentforactionsisproblem-aticinthepresenceofknowledge.GivenoursuccessorstateaxiomforK,itwouldrequiretheagenttoknowthetimeafteranyaction,evenifitwasunknownintheprevioussituation.Toavoidthis,wecannotrepresenttimeasanargumenttotheinstantaneousactions.

Instead,werepresenttheinstantaneousactionsandasso-ciatedtimesasatupleoftheformwithfunctionsACTIONandTIMEdefined,returningthefirstandsecondele-mentsofthetuple:

ACTION()=a(7)TIME(<

a,t>)=t

(8)

Thesepairs,representedbyvariablesp,p󰀂thesortaction-timepairs.ConcurrentActions,...areareelementsnowasetofofsuchtuples.Thesortactioncontainsactionswithoutatemporalargument.

Wealsohavethefollowing

START(DO(p,s))

=TIME(p)(9)

whichisneededtorelatethetimeoftheaction/timepairtothestartofasituation.TheremayalsobeanaxiomgivingthestarttimeoftheinitialsituationS0.Wealsodefineavariantnotation:

TIME(DO(p,s))=TIME(p)(10)

Weadopt,withoutsignificantchange,Reiter’srequirementthatconcurrentactionsbecoherent,thatisthereisatleastoneaction-timepairpinthecollection,andthetimeofallpairsinthecollectionisthesame:

COHERENT(∃(pc))

p≡

󰀟c∧(∃t)(∀p󰀂)[p󰀂󰀟c→TIME(p󰀂)=t(11)

].

Asetofaction-timepairsarecoherentifeachofthemhavethesametimecomponent.

Thedefinitionoftimecanreadilybeextendedtosetsofconcurrentactionsandthisallowsustodefinethefunctionstartofasituationresultingfromtheexecutionofaconcur-rentaction.

COHERENT[(c)→

∧TIME(c)=do(tc,≡s))∃p=(p∈c∧TIME(p)=t)]

START(TIME(c)].(12)

ThepredicatePOSS(c,s)meansthatitispossibletoexe-cuteconcurrentactioncinsituations.

POSS(ACTION→P(p),s)),

∧TIME(p)>TIME(s)

OSS(p,s(13)

POSS(p,s)→POSS({p},s),(14)

POSS(c,s)→COHERENT(c)∧(∀p)[p󰀟c→POSS(p,s)].

(15)

Ifitispossibletoexecuteaconcurrentactions,thenitisco-herentandeachofthesimpleactionsispossible.

Weimplicitlyassumeanadditionalsortrangingovertimepointswhichcanbeintegers,rationalsorreals;dependingonhowonewantstomodeltime.ThestandardArabicnumeralsareusedtorepresenttimepoints.Additionally,thesymbolsforadditionandsubtractionareinterpretedastheusualoper-ationsonnumbers(integers,realsetc.)

5.2PreconditionInteractions

Weneedtobeabletoconcludewhenaparticularconcurrentactioncispossibleinasituationcinorderforthemachinerybeingdevelopedintherestofthispapertowork.Unfortu-nately,Sentence15doesnotsuffice.Theconditionalcannotbechangedtoabiconditionalbecauseofthepreconditionin-teractionproblem[Pinto,1994;1998].

Thisissueneedstobehandledbytheaxiomatizerofthedomain.Forexample,theaxiomatizermightprovidethefol-lowingaxiom:

POSS({pP1,p2},s)≡

OSS¬P(ACTION(a1),s)∧POSS(ACTIONp(a2),s)∧RECINT(a1,a2)∧COHERENT({1,p2})

(16)

Asdiscussedin[Pinto,1994;1998],theaxiomatizationofPRECINTisdomaindependentandcanbedoneatincreasinglevelsofdetail.

Forthepurposesofthispaper,thepointhereisthatwhat-eversolutionisusedforthepreconditioninteractionproblemintheordinarysituationcalculuscarriesovertothecaseofknowledgeandsensing.

5.3

SuccessorStateAxiomforKwithConcurrency

TheSuccessorStateAxiomforKusingconcurrencycanbestatedinseveralalternativewaysdependingonwhatcondi-tionsonewishestoapplyregardingtheagent’sknowledgeoftime.WecontinuetorequirethattherelationKataparticularsituationDO(c,s)iscompletelydeterminedbytherelationatsandThethefollowingsetofconcurrentsuccessoractionsstateaxiomc.

modelsanagentwhoknowsanaccuratehowclock.

muchtimeispassing3.ThisisanagentwhohasK(s󰀁󰀁,(DO((∃c,s󰀁s,))c󰀁)≡

s󰀁󰀁∧(∀p󰀁)p󰀁󰀊=c󰀁DO(∃p(c󰀁)p,s󰀁󰀊c

)∧K(s󰀁,s)∧POSS(c󰀁,s󰀁∧)∧ACTION(∀p)p󰀊(cp󰀁p())∃==p󰀁ACTION(p)∧)p󰀁󰀊c󰀁

ACTION(ACTION(p󰀁∧)

∧START(∀p)p(󰀊s󰀁󰀁c)→

=START(s󰀁)+(TIME(c)−START(s))SR(ACTION(p),s)=SR(ACTION(p),s󰀁

)

(17)

Afterexecutingasetofconcurrentactionscinsituations,asfarastheagentknows,itcouldbeinasituations󰀂󰀂iffs󰀂󰀂istheresultofperformingc󰀂insomepreviouslyaccessiblesituations󰀂,providedthatcispossibleins󰀂andthats󰀂isidenticaltosintermsofwhatisbeingsensed.Furthermore,itisrequiredthattheconcurrentactionc󰀂beingperformedinallsituationsaccessiblefromsbeidenticaltocintermsoftheindividualactionsthatmakeuptheset.

NotethatitisnotrequiredthattheTIMEoftheactionsinalltheaccessiblesituationsbeidentical.Ifthiswerethecase,itwouldforcetheagenttoknowtheobjectivetimeafterexecut-inganyaction.Rather,itisonlyrequiredthatthedifferencebetweenthestartofthecurrentsituationandthestartoftheprevioussituationbethesameinallaccessiblesituations(in-cludingtheactualsituation).Thisrequirementdoesensurethattheagentknowshowmuchtimeispassing,buttheob-jectivetimeisonlyknownifitwasknownbeforetheactionhasoccurred.

5.4ConcurrencyandSensing

Onecanreadilyimaginecasesofsensingactionswherethedesiredresultofsensing(knowingwhetherornotsomepropositionholds)dependsuponsomeotheractionoccurringconcurrently.Forexample,thelightneedstobeturnedonwhilethecameraisclicked.Ifthelightisoff,thensensingproducesnoknowledge.

Considerrepresenting,therequirementthatthelightswitchbepressedwhileSENSEwhetherornotPholdsPoccursfortheknowledgeoftoresultfromtheexecutionofSENSEP.WeneedtodefineapredicateSCOND.

SCOND(SENSEP,s)≡PRESSING(s)

(18)

3

Otherpossibilitiesareconsideredin[Scherl,2003].

toNowincludetheSsuccessoraswell.

stateaxiomforKneedstobemodifiedCONDK(s󰀁󰀁,(DO∧(∀((∃c,p󰀁s󰀁s),))pc󰀁󰀁󰀊)≡

cs󰀁󰀁󰀁󰀁(∃=pDO)p(󰀊c󰀁,s󰀁)∧K(s󰀁,s)∧POSS(c󰀁,s󰀁∧)∧(∀p)p󰀊c()∃=c

ACTION(pp󰀁)ACTIONp󰀁󰀊c󰀁

(p)∧ACTION(p)=ACTION(p󰀁∧)

∧START(s󰀁󰀁)=START(s󰀁)+(TIME(c)−START(s((S∀p)p󰀊c∧

))COND(ACTION(sp)),=s)∧SCOND(ACTION(p),s󰀁()→

SRACTION(p),SR(ACTION(p),s󰀁

)

(19)

ForeveryactionanappropriateSCONaxiomneedstobewritten.Formostactions,theactionissimply:

SCOND(a,s)≡T

(20)

6TheLanguageandExamples

6.1

FurtherConstructs

Weneedsomewaytorefertothecurrenttimewithoutspeci-fyingthevalueofthecurrenttime.Toachievethisweusethespecialindexicaltermnow.Uponexpansionthetermisre-placedwiththeappropriatesituationterm.So,START(now)canbeusedtorefertothecurrenttime.Hereweillustratebyexample.Theagent’sknowingtheobjectivetimeisexpressedas∃tKnow(start(now)=t,s).Thisexpandsinto

∃t∀s󰀂(K(s󰀂,s)→START(s󰀂)=t).

Weaugmentourlanguagewithanumberofadditionalex-pressions.ThesearebasedonideasdevelopedbyLesperanceandLevesque[Lesp´eranceandLevesque,1995]andrequiretheuseofthenotionofprecedenceofsituationsasdefinedearlier.NotethatwedistinguishbetweentheThemacroHappenedisintroducedtoallowonetotalkaboutanactionoccurringataparticulartimepoint.

Happeneddef

∧(t,Act,s)=(∃c,s󰀂,s󰀂󰀂)s󰀂󰀂=DO(c,s󰀂)∧∃p󰀟c

ACTIONs󰀂󰀂󰀉(sp)∧=sAct󰀂≺s∧󰀂󰀂

TIME(p)=t∧

(21)

Itspecifiesthatanactionoccurredpriortosanditwastimetatsomepointduringtheaction’sduration.

ThemacroWasatisintroducedtoallowonetoassertthatafluentwastrueataparticularpointintime.

Wasat(t,def=P(then),s)=(∃s󰀂)P(then){s󰀂t/then}∧

¬(START∃s󰀂󰀂)s(󰀂s󰀂≺)∨s󰀂󰀂t≺>sSTART∧(s󰀂∧)

START(s󰀂󰀂)≤t

ItspecifiesthatPheldats󰀂andtwasthetimeofs󰀂ors󰀂

(22)

pre-cededtandnoothersituationafters󰀂precededt.Hereweintroduceanotherspecialindexicalthenwhichisneededtoensurethatthecorrectsituationissubstitutedintothesitua-tionargumentofthepredicatewhichisthemiddleargumenttoWasat.

7PropertiesoftheFormulation

Firstofall,weshowthatthedistinctionbetweenindexicalandobjectivetimeispreserved.

Proposition1(PersistenceofIgnoranceofObjectiveTime)Forallsituationss,if¬∃tKnow(START(now)=t,s)thenindo(c,s)wherecisanyconcurrentactionitisalsothecasethat¬∃tKnow(START(now)=t,s)unlessthereissomea∈cwithanSRaxiomequivalenttothefollowing:SR(a,s)=r≡r=TIME(s)

Proposition2(PersistenceofKnowledgeofObjectiveTime)8Reasoning

AregressionoperatorRisdefinedrelativetoasetofsuc-cessorstateaxiomsΘ.Spacelimitationshereonlyallowasketchoftheregressionoperators.Fulldetailsmaybefoundin[Scherl,2003].

Theoperatorssatisfythefollowingregressiontheorem:Theorem1ForanygroundsituationtermsgrandformulaG:

F|=G(sgr)iffF−Fss|=R∗Θ[G(sgr)]

Forallsituationss,if∃tKnow(start(now)=t,s)thenindothat(c,∃st)Knowwhere(cstartisany(nowconcurrent)=t,s)

actionitisalsothecaseEvenifagentsdonotknowtheobjectivetime,theydoknowhowmuchtimehaspassedsincethelastoccurrenceofapar-ticularactionorthelasttimeatwhichaparticularfluentwastrue.

Proposition3(KnowledgeofIndexicalTime1)For∃tKnowsevery,((∃t󰀂

ActsuchthatActoccursins,

TIME(nowHappened)−t󰀂=(t,t󰀂s,)

Act,now)∧

Proposition4(KnowledgeofIndexicalTime2)ForeveryP∃suchtKnowsthat(there∃t󰀂issomes󰀂≺ssuchthatP(s󰀂)holds,(TIME(nowWasat)−(tt󰀂󰀂,=P(t,thens)

),now)∧

Additionally,thecrucialresultsof[ScherlandLevesque,2003]carryovertothecaseconsideredhere.TheseincludeProposition5(DefaultPersistenceofIgnorance)Foranactionαandasituations,if¬Knows(P,s)holdsandtheaxiomatizationentails

∀sP(s)≡P(DO(α,s))

and

∀y¬Knows((POSS(α)∧SR(α)=y)→P,s)then

¬Knows(P,DO(α,s))

holdsaswell.

Proposition6(KnowledgeIncorporation)Foraknowledge-producingactionα,afluentorthenegationofafluentF,afluentorthenegationofafluentP,andasituations,iftheaxiomatizationentails

∃yKnows(F≡SR(α)=y,s)

andalso

F(s),POSS(α,s),

and

Knows(F→P,s)

hold,then

Knows(P,DO(α,s))

holdsaswell.

Proposition7(Memory)ForallfluentsPandsituationss,ifKnows(P,s)holdsthenKnows(P,DO(α,s))holdsaslongastheaxiomatizationentails

∀sP(s)≡P(DO(α,s))

Theseresultsensurethatactionsonlyaffectknowledgeintheappropriateway.

HereFistheinitialaxiomatizationofthedomainandFthesetofsuccessorstateaxioms.

ssis

8.1RegressionOperators

TheregressionoperatorRisdefinedrelativetoasetofsuc-cessorstateaxiomsΘ.ThefirstfourpartsofthedefinitionoftheregressionoperatorRΘconcernordinary(i.e.notknowledge-producing)actions[Reiter,2001].Theyareex-actlythesameasthosein[Reiter,2001].Additionally,itisnecessarytocorrectlyregresstheequalitypredicateasdis-cussedin[ScherlandLevesque,2003;Reiter,2001].

Additionalstepsareneededtoextendtheregressionop-eratortoknowledge-producingactions.Twodefinitionsareneededforthespecificationtofollow.Whenϕisanarbitrarysentenceandsasituationterm,thenϕ[s]isthesentencethatresults󰀂frominstantiatingeveryoccurrenceofnowinϕwiths.Thereverseoperationϕ−1istheresultofinstantiatingeveryoccurrenceofs󰀂inϕwithnow.

StepvcoversthecaseofregressingtheKnowsoperatorthroughanon-knowledge-producingaction.StepvicoversthecaseofregressingtheKnowsoperatorthroughaknowl-edgeproducingaction.Inthedefinitionsbelow,s󰀂isanewsituationvariable.

v.Whenevercdoesnotcontainaknowledge-producingac-tion,

RRΘ[Knows[(W,DO(c,s))]=Knows(POSS(c)→Θ[WDO(trans(c),s󰀂)]]−1,s).vi.WheneverR∃y[Knowscdoes(W,containaknowledge-producingaction,

ΘDO(c,s))]=SRRKnows(SENSE[((Pi,s)=)y∧

OSS(c∧1SR(SENSE,s)i)=y)→Θ[WDO(trans(c))]]−Thespecialfunctiontransreplacescwithac󰀂thathastheidenticalactionineachoftheaction-timepairs.Butitre-placesthetimeportionwitharelativetime.Thisisanex-pressionoftheform(3=TIME(now)).So,ifcoccursinasituationtermoftheformDO(c,s)andTIME(c)is7andSTART(s)is4,thenthe7inthetimepartofeveryaction-timepairincwouldbereplacedby(3=TIME(now)).Theseareproperlyhandledbytheoperatorsforregressingequalitypredicates.

TheregressionoperatorsforHappenedandWasatfollow:viii.

R[Happened(∨Happened(t,Act,DO∃p󰀊c((t,(Act,c,s))]s)=

∧t≤START(s))

ACTION(p)=Act∧t=START(DO(c,s)))

[Loboetal.,2001]JorgeLobo,GiselaMendez,andStuartTaylor.KnowledgeandtheactiondescriptionlanguageA.R[Wasat(t,W,DO(c,s))]=

JournalofLogicProgramming,1(2):129–184,2001.(Wasat(t,W,s)∧t∨(W(s)∧t≥START(s)∧tix.

Theendresultofregressionisasentence(possiblymuch

larger)inalanguagewithoutactions.Thelanguageisa

modallanguagewithbothtemporalandepistemicoperators.

9Conclusions

TheresultsreportedinthispapercanbecombinedwithConcurrent,TemporalGologorRGolog[Reiter,2001][or

CONGOLOGGiacomoetal.,1997]tospecifyandcontrol

anagent(suchastherobotdiscussedinSection1)thatcon-currentlymovesaboutitsenvironmentandperformsvarious

actionsincludingsensingactions.Futureworkwilladdress

theissueofdevelopingagoodtheoremprovingmethodforthelanguageresultingfromregression.Thismethodneedstocombinemodaltheoremprovingwithamethodforsolvingintegerconstraints.AcknowledgmentsNumeroushelpfuldiscussionshavebeenheldwithYves

Lesp´eranceonmanyofthetopicscoveredinthispaper.Use-fulsuggestionsmadebyPatrickDoherty,DanieleNardi,and

anumberofanonymousreviewersofearlierversionsofthis

paperhavebeenincorporated.Additionalthanksaredueto

SteveZimmerbaumwithwhomtheinitialstagesofthisworkwerecarriedout.ThisresearchwaspartiallysupportedbyNSFgrantsSES-9819116andCISE-9818309.References[Baraletal.,1997]ChittaBaral,MichaelGelfond,andAlessandroProvetti.Representingactions:Laws,obser-vationsandhypotheses.JournalofLogicProgramming,31(1-3):201–243,1997.

[Faginetal.,1995]R.Fagin,J.Y.Halpern,Y.O.Moses,andM.Y.Vardi.ReasoningaboutKnowledge.MITPress,Cambridge,Mass,1995.

[Giacomoetal.,1997]G.DeGiacomo,Y.Lesp´erance,andH.J.Levesque.Reasoningaboutconcurrentexecution,prioritizedinterrupts,andexogeneousactionsinthesitua-tioncalculus.InProceedingsoftheFifteenthInternational

JointConferenceonArtificialIntelligence,Nagoya,Japan,

1997.

[Lesp´eranceandLevesque,1995]YvesLesp´eranceandHectorLevesque.Indexicalknowledgeandrobotaction—alogicalaccount.ArtificialIntelligence,73(1-2):69–115,

February1995.

[Lesp´eranceetal.,2000]YvesLesp´erance,HectorJ.Levesque,FangzhenLin,andRichardB.Scherl.Abilityandknowinghowinthesituationcalculus.StudiaLogica,66(1),2000.[LinandReiter,1994]FangzhenLinandRaymondReiter.Stateconstraintsrevisited.JournalofLogicandCompu-tation,4(5):655–678,1994.Somephilosophicalproblemsfromthestandpointofar-tificialintelligence.InB.MeltzerandD.Michie,editors,

MachineIntelligence4,pages463–502.EdinburghUni-versityPress,Edinburgh,UK,1969.

[Moore,1980]R.C.Moore.Reasoningaboutknowledgeandaction.TechnicalNote191,SRIInternational,October

1980.[Pinto,1994]J.A.Pinto.TemporalReasoningintheSit-uationCalculus.PhDthesis,DepartmentofComputerScience,UniversityofToronto,Toronto,Ontario,1994.AvailableastechnicalreportKRR-TR-94-1.[Pinto,1998]JavierA.Pinto.Concurrentactionsandinter-actingeffects.InPrinciplesofKnowledgeRepresentationandReasoning:ProceedingsoftheSixthInternationalConference(KR-98),pages292–303.MorganKaufmann

Publishing,1998.

[Reiter,1991]RaymondReiter.Theframeprobleminthe

situationcalculus:Asimplesolution(sometimes)andacompletenessresultforgoalregression.InVladimirLifs-chitz,editor,ArtificialIntelligenceandMathematicalThe-oryofComputation:PapersinHonorofJohnMcCarthy,pages359–380.AcademicPress,SanDiego,CA,1991.[Reiter,2001]RaymondReiter.KnowledgeinAction:Logi-calFoundationsforSpecifyingandImplementingDynam-icalSystems.TheMITPress,Cambridge,Massachusetts,

2001.

[ScherlandLevesque,2003]RichardScherlandHectorLevesque.Knowledge,action,andtheframeproblem.Ar-tificialIntelligence,144:1–39,2003.[Scherl,2003]RichardScherl.Axiomatizingtheinteractionofknowledge,time,andconcurrencywiththesituation

calculus.journalversioninprogress,2003.[Shanahan,1995]MurrayShanahan.Acircumscriptivecal-culusofevents.ArtificialIntelligence,77(2):249–284,

September1995.[Thielscher,2000]MichaelThielscher.Representingtheknowledgeofarobot.InA.Cohn,F.Giunchiglia,

andB.Selman,editors,ProceedingsoftheInternational

ConferenceonPrinciplesofKnowledgeRepresentation

andReasoning(KR),pages109–120.MorganKaufmann,

2000.[ZimmerbaumandScherl,2000]StephenZimmerbaumandRichardScherl.Knowledge,time,andconcurrencyinthe

situationcalculus.InC.CastelfranchiandY.Lesp´erance,

editors,IntelligentAgentsVII:Proceedingsofthe2000WorkshoponAgentTheories,Architectures,andLan-guages(ATAL-2000),LNAI,Berlin,2000.Springer-Verlag.

因篇幅问题不能全部显示,请点此查看更多更全内容