DesignofCodedModulationSchemesfor
OrthogonalTransmitDiversity
MohammadJaberBorran,MahsaMemarzadeh,andBehnaamAazhang
October25,2001DRAFT
2
Abstract
Inthispaper,weproposeatechniquetodecoupletheproblemsofspatialandtemporaldiversitygainmaximizationinvolvedinthedesignofspace-timecodesinfastRayleighfadingchannelsbyusingorthogonaltransmitdiversitysystems.Wewillalsointroducetheideaofconstellationexpansion(indimensionorsize)todesigncodedmodulationschemeswithmaximumtemporaldiversitygainfororthogonaltransmitsystems.TheChernoffupperboundfortheerrorprobabilityisusedtoshowthatthecodedesigncriterionreducestothemaximizationofHammingandproductdistancesintheexpandedconstellation.Theproposedtechniqueisdemonstratedbydesigningmultilevelandmultipletrelliscodedmodulationschemesfororthogonaltransmitdiversitysystems.Thesecodesareshowntohavebetterperformancecomparedtothecodingschemesdesignedforsingletransmitandreceiveantennas.
Keywords
CodedModulation,OrthogonalTransmitDiversity,MultilevelCoding,MultipleTrellisCodedModulation,Mul-tidimensionalTrellisCodedModulation
I.INTRODUCTION
Itiswellknown[1]thatthedesignofoptimumspace-timecodesformultipletransmitandreceiveantennasystemsoverfastRayleighfadingchannels,withindependentfadingcoefficientsbetweendifferenttrans-mittersandreceivers,isbasedontwocriteria:thedistancecriterion,andtheproductcriterion.Assumethat
and
,representthe
sequencesoftransmittedanderroneouslydecodedsymbols,respectively,where
isthenumberoftransmit
antennasandisthelengthofthecodeblock.In[1],itisshownthatwhencompletechannelstateinforma-tionisavailableatthereceiver,theChernoffupperboundforthepairwiseerrorprobabilitycanbeexpressedas
3
throughthecodingscheme(temporaldiversitygain).Thedistinctionbetweenthesetwopotentialsourcesofdiversitygainisnoteasilyseenfromtheabovedistancecriterion.Decouplingtheproblemsofmaximizingthesetwodiversitygains,ifpossible,couldsignificantlysimplifythecodedesignprocedure.Inthatcase,wecouldusetheexistingcodingschemesdesignedforfastfadingchannelsandsingletransmitandreceivedantennas,becausetheseschemesarealreadydesignedtomaximizethetemporaldiversitygain.
Consideringasingleantennaatthereceiver,themaximumachievablespatialdiversitygainisequaltothenumberoftransmitantennas.Assumingacoherencetimeequaltothenumberoftransmitantennasforthechannel,oneofthetransmissionschemesthatcanprovidefullspatialdiversitygainandhasarelativelysimplestructureistheOrthogonalTransmitDiversity(OTD)systemproposedbyAlamouti[2].Moreover,ithasalreadybeenshown[3]thatthissystempreservesthecapacityofmultipletransmitandsinglereceiveantennasystems.ThesearemotivationstoconsidertheOTDsystemasameansofprovidingthespatialdiversitygainandgetthetemporaldiversitygainthroughanouterbandwidthefficientcodedmodulationscheme.Intheremaining,wewillconsiderthecaseoftwotransmitandonereceiveantennas,thoughthegeneralizationofthediscussiontoanynumberoftransmitantennasforwhichanorthogonaltransmissionschemeexists,isstraightforward.
InSectionII,wewillexplainthetechniqueofdecouplingtheproblemsofspatialandtemporaldiversitymaximizationusingtheOTDsystemwithmoredetail.Laterinthesamesectionwewillintroducetheideaofconstellationexpansion(indimensionorsize)todesigncodedmodulationschemesfortheorthogonaltransmitdiversitysystems.ItwillbefurthershownthatthecodedesigncriteriareducetothemaximizationofHammingandproductdistancesintheexpandedconstellation.SimulationresultsfortwobandwidthefficientcodedmodulationschemeswillbedemonstratedinSectionIII,andSectionIVpresentstheconclu-sions.
II.CODEDESIGNCRITERIA
FOR
ORTHOGONALTRANSMITDIVERSITYSYSTEM
Underchannelconditionsdescribedintheprevioussection,itwasmentionedthattheorthogonaltransmitdiversitysystemiscapableofprovidingthemaximumachievablespatialdiversitygain.InFig.1,theOTDsystemisdepictedforthecaseoftwotransmitandsinglereceiveantennas.TheChernoffupperboundforthepairwiseerrorprobabilityofthissystemisderivedin[3]as
4
Fig.1.OrthogonalTransmitDiversity(OTD)System
transmitantennas,resultsfromtheorthogonaltransmissionsystem.Hence,applyingtheOTDsystemofFig1,wehavemaximizedthespatialdiversitygainachievablebytwotransmitantennas.Thismeansthattheproblemofdiversitygainmaximizationhassomehowbeendecoupledintotwoproblems:maximizationofthespatialdiversitygain,andthetemporaldiversitygain.TheformercanbeachievedbyusingtheOTDsystemandthelatteristheresultofanoutercodedmodulationschemeoptimizedintermsofitstemporaldiversitygain.
In[4],ithasbeenshownthattheperformanceofcodesinfastfadingchannelswithsingletransmitandreceiveantennasiscontrolledbytwofactors:thecodeminimumHammingdistance(lengthoftheshortesterroreventpath),andtheproductofsquaredsymboldistancesalongtheshortesterroreventpath.Thesetwofactorsdeterminethetemporaldiversitygainandthecodinggainofthecode,respectively.However,from(2)itcanbenoticedthattheoptimumcodefortransmissionovertheOTDsystemisnotsimplyobtainedbythecriteriaof[4],butinsteaditinvolvesmaximizationofnewdistancequantitiesdefinedintermsofpairsofconsecutivesymbols.ThesenewpairwiseHammingandpairwiseproductdistances,denotedbyand
respectively,aredefinedas:
(3)
and
(4)
ThisisthemotivationtointroduceanewcodedesigntechniquefortheOTDsystembasedonexpand-October25,2001
DRAFT
5
ingthesignalconstellation.Theexpansioncanbeperformedineitherdimensionorsizeoftheconstel-lation(goingtohigherordersofmodulation).Eachpointinthenewconstellationcanbeconsideredastheconcatenationoftwoconsecutivesignalpointsfromtheoriginalsignalset.Denotingthesequencesoftransmittedanderroneouslydecodedsymbolsinthenewconstellationby
and
,respectively,wewillhave:
Thus,(3)and(4)canberewrittenas
(5)
and
(6)
Hence,thecodedesigncriteriawillbebasedonmaximizingtheminimumsymbolHammingandproductdistancesintheexpandedconstellation.
Thus,toachieveacertaindiversitygainof,onlyaminimumsymbolHammingdistanceof
inthe
expandedconstellationisneeded.ThisdoesnotnecessarilyrequireaminimumHammingdistanceof
intheoldsignalset,asopposedtothedesigntechniquesofcodedmodulationschemesforsingletransmitandreceiveantennasystems[5].Infact,itisclearfromtheChernoffupperboundof(2)thatadoptingtheorthogonaltransmitdiversity,theHammingdistancerequirementsofthecodedsymbolshalves.Thisistheconsequenceoftheinherentspatialdiversitygainoftworesultingfromtheorthogonaltransmissionsystem.ThereductionintheHammingdistancerequirementsallowsustohavelargersubsetsinthesignalsetpartitioning,whichinturnresultsinhigherachievablecoderates.ThiswillbeexplainedwithmoredetailinSectionIII.
III.DESIGN
OF
TRELLISCODEDMODULATIONSCHEMES
FORTHE
OTDSYSTEM
InSectionII,itwasdescribedthatthecodedesigncriteriafortheOTDsysteminfastfadingchannels,isbasedonmaximizationofHammingandproductdistancesintheexpandedconstellation,whereeachpointistheconcatenationoftwopointsfromtheoriginalsignalset.Assumingthattheoriginalsignalsetistwodimensional(2D),onewayofconstructingthenewconstellationistoconsiderthefourdimensional(4D)Cartesianproductoftheoriginal2Dsignalsetbyitself.Anotherwayistoconstructanew2Dconstellation
October25,2001
DRAFT
6
ofsize
,where
isthesizeoftheoriginalsignalset.Thecodedesignwilllaterbeperformedforthe
newconstellationadoptingthedesigncriteriaofSectionII.Attheoutputofthecodedmodulationblock,eachencodedsymbolfromthenewconstellationwillbeconsideredasconcatenationoftwosignalpointsfromtheoriginalconstellation,andwillbetransmittedintwoconsecutivesymbolintervalsthroughtheOTDsystem.ItshouldbenoticedthatMultipleTrellisCodedModulation(MTCM)andMultiLevelCoding(MLC)designtechniquessatisfyingthecriteriaofSectionII,havealreadybeenproposedintheliterature([5,6]).Theseareappropriatecodedmodulationschemesforfastfadingchannels,astheycanbedesignedtoachievegooddistancepropertiesrequiredbythecriteriaderivedin[4].
Intheremaining,wewilldemonstratetheabovedesignprocedurethroughtwoexamples,wheretwotrelliscodedmodulationschemeshavebeendesignedfortransmissionthroughtheOTDsysteminafastRayleighfadingchannelwithcoherencetimeoftwosymbolintervals.
A.ConstellationExpansioninDimension:DesignofMultidimensionalMLCforOTD
Supposethatthegoalistodesignacodedmodulationschemewithrate3bits/sec/Hzandtotaldiversitygainof4.Weusea4D256-pointlatticeconstellationwith2Dconstituentscomingfroma16QAMconstel-lation,alongwithatwo-levelcodewhichprovidesminimumHammingdistanceof2.Twoconvolutionalencodersofrates2/3and4/5areusedasthefirstandsecondlevelencoders.The4Dsetpartitioningchain
isusedtopartitionthe256-pointconstellationinto8subsetsofsize32,asexplainedin
[7]and[8].Oneofthe8subsetsischosenbytheoutputsofthefirstlevelencoder.Theoutputsofthesecondlevelencoderarethenusedtochooseoneofthe32pointsinsidethechosensubset.Each4Dpointisthenmappedintoitstwo2Dcoordinatestoproduceasequenceofsignalpointsfroma16QAMconstellation.ThissequenceislatertransmittedthroughtheOTDsystemofFig.1.
TheerrorrateperformanceoftheabovecodeisshowninFig.2(a)andiscomparedtotheuncoded8PSKOTDscheme.Ascanbeseenfromtheerrorratecurves,thecodedschemeshowsmorethan4dBgainovertheuncodedschemeaterrorratesof
andlower.
B.ConstellationExpansioninSize:DesignofMTCMforOTD
Considerdesigningacodewiththeoveralldiversitygainof4andrate1.5bits/s/HzusingQPSKmodula-tion.InordertoachieveaminimumHammingdistanceof2resultinginatotaldiversitygainof4usingtheOTDsystem,itsufficestoconsideranMTCMcodewithmultiplicityof4andperformthesetpartitioningtaskfora2-foldCartesianproductofa16PSKsignalset.Eachpointinthe16PSKsignalsetisconsideredastheconcatenationoftwoconsecutiveQPSKsymbols.Ifthesetpartitioningschemeof[5]isadoptedfor
October25,2001DRAFT
7
10010Uncoded Orthogonal Transmission (R = 3 bits/s/Hz)MLC for Orthogonal Transmission (R = 3 bits/s/Hz)−110−110−2Symbol Error ProbabilitySymbol Error ProbabilitySlope = − 2 10−310−210−310−4Slope = − 4 Uncoded Orthogonal Transmission (R = 1.5 bits/s/Hz) MTCM for Single Transmission (R = 1.5 bits/s/Hz) MTCM for Orthogonal Transmission (R = 1.5 bits/s/Hz)10−468101214SNR per Bit16182010−567891011SNR per Bit1213141516(a)(b)Fig.2.Symbolerrorrateperformanceof(a)MultidimensionalMultilevelTCM,and(b)MultipleTCM
a2-foldCartesianproductof16PSKsymbols,amaximumof16codesetscanbeassignedtoeachsubset.Thismeansthatamaximumof16parallelpathscanbeconsideredforthetrellis.So,ifa4statefullyconnectedtrellisisconsidered,theencoderwouldbecapableofencoding6inputbits.Togetherwiththe4QPSKsymbolsassignedtoeachtransitionofthetrellis,thisresultsinarateof
bits/sec/Hz.
Notethatifwewantedtousethesametrellistodesignacodewithdiversitygainof4forsingletransmitandreceiveantennasystem,themaximumachievableratewouldbe1bit/s/Hz.Thatisbecausethesetpar-titioningofthe4-foldCartesianproductofQPSKsymbols,wouldresultinsubsetswithamaximumsizeoffour[5].Thus,forcomparisonpurpose,an8statefullyconnectedtrellishasbeenusedtodesignanMTCMcodewithrate1.5bits/s/Hzanddiversitygainof4forsingletransmissionscheme.
TheerrorperformancesofthesetwotransmissionschemesareshowninFig.2(b)andhavebeencomparedtotheuncodedcase.ItcanbeseenthattheMTCMcodedesignedfortheOTDsystemoutperformsthesingletransmitandreceiveantennacase,andshowsmorethan5dBgainovertheuncodedschemeaterrorratesof
andlower.
IV.CONCLUSIONS
Inthispaper,weintroducedamethodtodecoupletheproblemsofmaximizationofspatialandtemporaldiversitygainbyusingtheorthogonaltransmitdiversitysystem.Wealsoderivedthecriteriaforthedesignofcodedmodulationschemesfortheorthogonalsystembasedontheexpansionofthesignalconstellation.Itwasshownthatthisexpansioncanbeperformedineitherdimensionorsizeofthesignalset.TheproposeddesigncriteriawerethenappliedtothedesignoftrelliscodedmodulationschemesfortheOTDsystem.The
October25,2001DRAFT
8
newcodingschemeswereshowntohavesignificantlybetterperformancecomparedtothecodesdesignedforsingletransmitandreceiveantennasystemsusingsimulations.
REFERENCES
[1]V.Tarokh,N.Seshadri,andA.R.Calderbank,“Space-timecodesforhighdataratewirelesscommunication:Performance
criterionandcodeconstruction,”IEEETransactionsonInformationTheory,vol.44,no.2,pp.744–765,March1998.[2]S.M.Alamouti,“Asimpletransmitdiversitytechniqueforwirelesscommunications,”IEEEJournalonSelectedAreasin
Communications,vol.16,no.8,pp.1451–1458,Oct.1998.
[3]T.MuharemovicandB.Aazhang,“Informationtheoreticoptimalityoforthogonalspace-timetransmitschemesandconcate-natedcodeconstruction,”inProceedingsofICT,June2000.
[4]D.DivsalarandM.K.Simon,“ThedesignoftrelliscodedMPSKforfadingchannels:Performancecriteria,”IEEETransac-tionsonCommunications,vol.36,no.9,pp.1004–1012,Sept.1988.
[5]D.DivsalarandM.K.Simon,“ThedesignoftrelliscodedMPSKforfadingchannels:Setpartitioningforoptimumcode
design,”IEEETransactionsonCommunications,vol.36,no.9,pp.1013–1021,Sept.1988.
[6]N.SeshadriandCE.W.Sundberg,“Multileveltrelliscodedmodulationsfortherayleighfadingchannel,”IEEETransactions
onCommunications,vol.41,no.9,pp.1300–1310,Sept.1993.
[7]G.D.Forney,“Cosetcodes-PartI:Introductionandgeometricalclassification,”IEEETransactionsonInformationTheory,
vol.34,no.5,pp.1123–1151,Sept.1988.
[8]Lee-FangWei,“Trellis-codedmodulationwithmultidimensionalconstellations,”IEEETransactionsonInformationTheory,
vol.IT-33,no.4,pp.483–501,July1987.
October25,2001DRAFT
因篇幅问题不能全部显示,请点此查看更多更全内容