您的当前位置:首页资阳市2009年中考数学试题及答案

资阳市2009年中考数学试题及答案

2023-12-28 来源:小侦探旅游网


资阳市2009年高中阶段学校招生统一考试

数 学

第Ⅰ卷(选择题 共30分)

注意事项:每小题选出的答案不能答在试卷上,须用2B铅笔在答题卡上把对应题目的答案标号....涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.

一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.

1. –3的绝对值是( ) A. 3

B. –3

C. ±3

D. 9

2. 下列计算正确的是( ) A. a+2a2=3a3

B. a2·a3=a6

C. (a3)2=a9

D. a3÷a4=a1(a≠0)

3. 吴某打算用同一大小的正多边形地板砖铺设家中的地面,则该地板砖的形状不能是( ) A. 正三角形

B. 正方形

C. 正六边形

D. 正八边形

4. 若一次函数y=kx+b(k≠0)的函数值y随x的增大而增大,则( ) A. k<0

B. k>0

C. b<0

D. b>0

5. 化简4x的结果是( ) A. 2x

B. ±2x

C. 2x

D. ±2x 1x1,6. 在数轴上表示不等式组2的解集,正确的是( )

x1

7. 如图1,在矩形ABCD中,若AC=2AB,则∠AOB的大小是( ) A. 30°

B. 45°

C. 60°

D.90°

图 1

8. 按图2中第一、二两行图形的平移、轴对称及旋转等变换规律,填入第三行“?”处的图形应是( )

1

图 2

9. 用a、b、c、d四把钥匙去开X、Y两把锁,其中仅有a钥匙能够打开X锁,仅有b钥匙能打开Y锁.在求“任意取出一把钥匙能够一次打开其中一把锁”的概率时,以下分析正确的是( )

A. 分析1、分析2、分析3 C. 分析1

B. 分析1、分析2 D. 分析2

10. 如图3,已知Rt△ABC的直角边AC=24,斜边AB=25,一个以点P为圆心、半径为1的圆在△ABC内部沿顺时针方向滚动,且运动过程中⊙P一直保持与△ABC的边相切,当点P第一次回到它的初始位置时所经过路径的长度是( )

A. C.

56 3

B. 25 D. 56

112 3图 3

资阳市2009年高中阶段学校招生统一考试 数 学

第Ⅱ卷(非选择题 共90分) 题号 得分 二 三 17 18 19 20 21 22 23 24 25 总 分 总分人 注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、

明确题目要求,规范地表达、工整地书写解题过程或结果.

二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.

11. 甲、乙两人进行跳远训练时,在相同条件下各跳10次的平均成绩相同,若

甲的方差为0.3,乙的方差为0.4,则甲、乙两人跳远成绩较为稳定的是_________(填“甲”或“乙”).

2

2xy5,12. 方程组的解是_____________.

xy413. 若两个互补的角的度数之比为1∶2,则这两个角中较小角的度数是_____________. ..14. 如图4,已知直线AD、BC交于点E,且AE=BE,欲证明△AEC≌△BED,需增加的条件可以是__________________(只填一个即可).

15. 若点A(–2,a)、B(–1,b)、C(1,c)都在反比例函数y=则用“<”连接a、b、c的大小关系为___________________.

16. 若n为整数,且n≤x1111980198030个k(k<0)的图象上,x图4

119801112009200930个12009的值,可以确定x=

11111980198119821120082009的整数部分是______.

三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.

17.(本小题满分7分) 解方程:

18.(本小题满分7分)

如图5,已知□ABCD的对角线AC、BD相交于点O,AC =12,BD=18,且△AOB

的周长l=23,求AB的长.

3

x210. x3图5

19.(本小题满分8分)

已知Z市某种生活必需品的年需求量y1(万件)、供应量y2(万件)与价格x(元/件)在一定范围内分别近似满足下列函数关系式:y1= –4x+190,y2=5x–170.当y1=y2时,

称该商品的价格为稳定价格,需求量为稳定需求量;当y1y2时,称该商品的供求关系为供不应求.

(1) (4分) 求该商品的稳定价格和稳定需求量;

(2) (4分) 当价格为45(元/件)时,该商品的供求关系如何?为什么?

20.(小题满分8分)

根据W市统计局公布的数据,可以得到下列统计图表.请利用其中提供的信息回答下列问题:

W市近几年生产总值(GDP)(亿元) 467.6 500409.5300.1400 300263.4200 1000 2005年2006年2007年2008年 (1) (3分) 从2006年到2008年,W市的GDP 哪一年比上一年的增长量最大?

(2) (3分) 2008年W市GDP分布在第三产业 的约是多少亿元?(精确到0.1亿元)

(3) (2分) 2008年W市的人口总数约为多少万人?(精确到0.1万人)

21.(本小题满分8分)

W市2008年GDP结构分布第一产业第二产业28%第三产业26%46%W市近3年人均GDP(元) 年 份 人均GDP 2006年 2007年 2008年 7900 10600 12000 4

某市在举行“5.12汶川大地震”周年纪念活动时,根据地形搭建了一个台面为梯形(如图6所示)的舞台,且台面铺设每平方米售价为a元的木板.已知AB=12米,AD=16米,∠B=60°,∠C=45°,计算购买铺设台面的木板所用资金是多少元.(不计铺设损耗,结果不取近似值)

22.(本小题满分8分)

已知关于x的一元二次方程x2+kx–3=0,

(1) (4分) 求证:不论k为何实数,方程总有两个不相等的实数根;

(2) (4分) 当k=2时,用配方法解此一元二次方程.

23.(本小题满分8分)

如图7,已知四边形ABCD、AEFG均为正方形,∠BAG=α (0°<α<180°). (1) (6分) 求证: BE=DG,且 BE⊥DG;

(2) (2分) 设正方形ABCD、AEFG的边长分别是3和2,线段BD、DE、EG、GB所围成封闭图形的面积为S.当α变化时,指出S的最大值及相应的α值.(直接写出结果,不必说明理由)

24.(本小题满分9分)

5

图6

图7

如图8-1,已知O是锐角∠XAY的边AX上的动点,以点O为圆心、R为半径的圆与射线AY切于点B,交射线OX于点C.连结BC,作CD⊥BC,交AY于点D.

(1) (3分) 求证:△ABC∽△ACD;

3(2) (6分) 若P是AY上一点,AP=4,且sinA=,

5① 如图8-2,当点D与点P重合时,求R的值;

② 当点D与点P不重合时,试求PD的长(用R表示).

25.(本小题满分9分)

图8-1

图8-2

12

x–2x+1的顶点为P,A为抛物线与y轴的交点,过A2与y轴垂直的直线与抛物线的另一交点为B,与抛物线对称轴交于点O′,过点B和P的直线l交y轴于点C,连结O′C,将△ACO′沿O′C翻折后,点A落在点D的位置.

如图9,已知抛物线y=

(1) (3分) 求直线l的函数解析式; (2) (3分) 求点D的坐标;

(3) (3分) 抛物线上是否存在点Q,使得S△DQC= S△DPB? 若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.

6

图9

资阳市2009年高中阶段学校招生统一考试 数学试题参考答案及评分意见

说 明:

1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.

2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.

3. 考生的解答可以根据具体问题合理省略非关键步骤.

4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.

5. 给分和扣分都以1分为基本单位.

6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.

一、选择题(每小题3分,共10个小题,满分30分): 1-5. ADDBC ;6-10. DCBAC.

二、填空题(每小题3分,共6个小题,满分18分):

x3,11.甲;12.13.60°;14.∠A=∠B或∠C=∠D或CE=DE;15.cy1;三、解答题(共9个小题,满分72分):

17.原方程可变形为:3(x–2)–x=0, ································································· 3分

整理,得 2x=6, ···················································································· 5分 解得 x=3. ··························································································· 6分 经检验,x=3是原方程的解. ···································································· 7分 18.∵□ABCD的对角线AC、BD相交于点O,AC =12,BD=18, ························· 1分

1∴ AO=AC=6, ··················································································· 3分

21BO=BD=9. ······················································································· 5分

2又∵△AOB的周长l=23,∴ AB=l–(AO+BO)=23–(6+9)=8. ····························· 7分 19.(1) 由y1=y2,得:–4x+190=5x–170,························································· 2分

解得 x=40. ·························································································· 3分 此时的需求量为 y1= –4×40+190=30. ························································· 4分 因此,该商品的稳定价格为40元/件,稳定需求量为30万件. (2) 当x=45时,y1= – 4×45+190=10, ························································ 5分 y2= 5×45–170=55, ················································································· 6分 ∴ y17

20.(1) 观察条形统计图可知,W市的GDP2007年比上一年的增长量最大. ············ 3分

(2) 2008年W市GDP分布在第三产业的约是: 467.6×26%≈121.6(亿元). ·········································································· 6分 (3) 2008年W市人口总数约为:467.6×104÷12000≈389.7 (万人). ······················ 8分 21.作AE⊥BC于点E,DF⊥BC于点F,易知ADFE为矩形. ····························· 1分

在Rt△ABE中,AB=12米,∠B=60°,∴ BE =12×cos60°=6(米), ····················· 2分

AE =12×sin60°=63(米) . ······································································ 3分 在矩形ADFE中,AD=16米,

∴ EF=AD=16米,DF=AE=63米. ·························································· 4分 在Rt△CDF中,∠C=45°,∴ CF =DF=63 (米) . ····································· 5分 ∴ BC=BE+EF+CF=(22+63) (米), ··························································· 6分 ∴ S梯形ABCD =(AD+BC)·AE=[16+(22+63)]×63=(54+1143) (米2), ········· 7分 ∴购买木板所用的资金为(54+1143)a 元. ················································ 8分

22

22. (1) 方程的判别式为 Δ=k –4×1×(–3)= k +12, ··············································· 2分

不论k为何实数,k2≥0,k2 +12>0,即Δ>0, ················································ 3分 因此,不论k为何实数,方程总有两个不相等的实数根. ······························· 4分 (2) 当k=2时,原一元二次方程即 x2+2x–3=0, ∴ x2+2x+1=4, ······················································································ 5分

2

∴ (x+1)=4, ························································································· 6分 ∴ x+1=2或x+1= –2, ············································································· 7分 ∴ 此时方程的根为 x1=1,x2= –3. ···························································· 8分 23. (1) 证法一:∵四边形ABCD、AEFG均为正方形,

∴ ∠DAB=∠GAE=90°,AD=AB,AG=AE. ················································ 2分 ∴ 将AD、AG分别绕点A按顺时针方向旋转90°,它们恰好分别与AB、AE重合,即点D与点B重合,点G与点E重合, ··········································································· 3分

∴ DG绕点A顺时针旋转90°与BE重合, ··················································· 5分 ∴ BE=DG,且BE⊥DG. ······································································· 6分

证法二:∵四边形ABCD、AEFG均为正方形, ∴ ∠DAB=∠GAE=90°,AD=AB,AG=AE. ················································ 2分 ∴ ∠DAB+α=∠GAE+α,∴ ∠DAG=∠BAE. ① 当α≠90°时,由前知 △DAG≌△BAE (S.A.S.), ······································ 2分 ∴ BE=DG, ························································································· 3分 且∠ADG=∠ABE. ················································································· 4分

设直线DG分别与直线BA、BE交于点M、N,又∵∠AMD=∠BMN,∠ADG+∠AMD=90°, ∴∠ABE+∠BMN=90°, ··········································································· 5分 ∴∠BND=90°,∴BE⊥DG. ···································································· 6分 ② 当α=90°时,点E、点G分别在BA、DA的延长线上,显然BE=DG,且BE⊥DG. (说明:未考虑α=90°的情形不扣分)

25(2) S的最大值为, ············································································· 7分

2

8

1212

当S取得最大值时,α=90°. ····································································· 8分 24.(1) 由已知,CD⊥BC,∴ ∠ADC=90°–∠CBD, ··········································· 1分

又∵ ⊙O切AY于点B,∴ OB⊥AB,∴∠OBC=90°–∠CBD, ························ 2分 ∴ ∠ADC=∠OBC.又在⊙O中,OB=OC=R,∴∠OBC=∠ACB,∴∠ACB=∠ADC. 又∠A=∠A,∴△ABC∽△ACD . ···························································· 3分

3(2) 由已知,sinA=,又OB=OC=R,OB⊥AB,

5∴ 在Rt△AOB中,AO=

5OBR54==R,AB=(R)2R2=R,

33sinA33558∴ AC=R+R=R . ·············································································· 4分

33ACAD由(1)已证,△ABC∽△ACD,∴ ,·············································· 5分 ABAC8RAD163∴,因此 AD=R. ································································ 6分 483RR33163① 当点D与点P重合时,AD=AP=4,∴R=4,∴R=. ··························· 7分

34② 当点D与点P不重合时,有以下两种可能:

316i) 若点D在线段AP上(即043316ii) 若点D在射线PY上(即R>),PD=AD–AP=R–4. ······························· 9分

433163综上,当点D在线段AP上(即0)时,

43416316PD=R–4.又当点D与点P重合(即R=)时,PD=0,故在题设条件下,总有PD=|R–4|(R>0).

343125.(1) 配方,得y=(x–2)2 –1,∴抛物线的对称轴为直线x=2,顶点为P(2,–1) . ··· 1分

21取x=0代入y=x2 –2x+1,得y=1,∴点A的坐标是(0,1).由抛物线的对称性知,点A(0,1)

2与点B关于直线x=2对称,∴点B的坐标是(4,1). ··········································· 2分

设直线l的解析式为y=kx+b(k≠0),将B、P的坐标代入,有 14kb,k1,解得∴直线l的解析式为y=x–3. ··································· 3分 12kb,b3.(2) 连结AD交O′C于点E,∵ 点D由点A沿O′C翻折后得到,∴ O′C垂直平分AD. 由(1)知,点C的坐标为(0,–3),∴ 在Rt△AO′C中,O′A=2,AC=4,∴ O′C=25.

1148据面积关系,有 ×O′C×AE=×O′A×CA,∴ AE=5,AD=2AE=5.

2255 9

作DF⊥AB于F,易证Rt△ADF∽Rt△CO′A,∴∴ AF=

AFDFAD, ACOAOCAD16AD8·AC=,DF=·O′A=,5分 OC5OC583163又 ∵OA=1,∴点D的纵坐标为1–= –,∴ 点D的坐标为(,–). ······· 6分

5555(3) 显然,O′P∥AC,且O′为AB的中点,

∴ 点P是线段BC的中点,∴ S△DPC= S△DPB . 故要使S△DQC= S△DPB,只需S△DQC=S△DPC . ···································································· 7分

过P作直线m与CD平行,则直线m上的任意一点与CD构成的三角形的面积都等于S△DPC ,故m与抛物线的交点即符合条件的Q点.

1633容易求得过点C(0,–3)、D(,–)的直线的解析式为y=x–3,

54535据直线m的作法,可以求得直线m的解析式为y=x–.

421357351令x2–2x+1=x–,解得 x1=2,x2=,代入y=x–,得y1= –1,y2=, 242242871因此,抛物线上存在两点Q1(2,–1)(即点P)和Q2(,),使得S△DQC= S△DPB.9分

28(仅求出一个符合条件的点Q的坐标,扣1分)

10

因篇幅问题不能全部显示,请点此查看更多更全内容