您的当前位置:首页基于ScAlMgO衬底的氮化镓单晶及其制备方法[发明专利]

基于ScAlMgO衬底的氮化镓单晶及其制备方法[发明专利]

来源:小侦探旅游网
(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 CN 111607824 A(43)申请公布日 2020.09.01

(21)申请号 202010487573.7(22)申请日 2020.06.02

(71)申请人 无锡吴越半导体有限公司

地址 214028 江苏省无锡市新吴区漓江路

11号(72)发明人 张海涛 许彬 庞博 刘良宏 (74)专利代理机构 六安市新图匠心专利代理事

务所(普通合伙) 34139

代理人 朱小杰(51)Int.Cl.

C30B 29/40(2006.01)C30B 25/18(2006.01)C23C 14/06(2006.01)C23C 14/34(2006.01)C23C 14/58(2006.01)

权利要求书1页 说明书4页 附图1页

C23C 16/34(2006.01)C23C 16/56(2006.01)

CN 111607824 A(54)发明名称

基于ScAlMgO4衬底的氮化镓单晶及其制备方法

(57)摘要

本发明提供基于ScAlMgO4衬底的氮化镓单晶制备方法,包括如下步骤:(1)提供ScAlMgO4衬底;(2)在所述ScAlMgO4衬底表面进行缓冲层生长;(3)所述缓冲层进行退火处理;(4)于所述缓冲层上生长GaN晶体;(5)降温,GaN晶体自所述ScAlMgO4衬底自动剥离。本发明不需要使用复杂的MOCVD沉积GaN并预处理以制作掩模或分离层的工艺,有效降低了生产成本;相比于传统衬底如蓝宝石,具有更高的质量与更大的曲率半径,对于生长4英寸以上的GaN来说,不会造成OFFCUT不均匀的问题;最后,本发明可以实现连续生长成厚度高达5毫米以上的晶棒,进一步降低了成本。

CN 111607824 A

权 利 要 求 书

1/1页

1.一种基于ScAlMgO4衬底的氮化镓单晶制备方法,其特征在于,包括以下步骤:(1)提供ScAlMgO4衬底;

(2)在所述ScAlMgO4衬底表面进行缓冲层生长;(3)所述缓冲层进行退火处理;(4)于所述缓冲层上生长GaN晶体;(5)降温,GaN晶体自所述ScAlMgO4衬底自动剥离。

2.如权利要求1所述的基于ScAlMgO4衬底的氮化镓单晶制备方法,其特征在于,所述ScAlMgO4衬底为圆形或正六边形。

3.如权利要求2所述的基于ScAlMgO4衬底的氮化镓单晶制备方法,其特征在于,所述ScAlMgO4衬底表面经过抛光处理,其具有原子层表面,表面粗糙度不超过0.5nm,其c-plane OFFCUT在0~1.5度。

4.如权利要求1所述的基于ScAlMgO4衬底的氮化镓单晶制备方法,其特征在于,步骤(2)中所述缓冲层生长采用低温AlN溅射法,温度设置为300~800℃,AlN厚度在10~300nm,并在步骤(3)中对所述缓冲层于H2/N2环境下进行高温退火处理。

5.如权利要求1所述的基于ScAlMgO4衬底的氮化镓单晶制备方法,其特征在于,步骤(2)中所述缓冲层生长为采用MOCVD方法生长的AlN薄膜模板,厚度为1~10um。

6.如权利要求1所述的基于ScAlMgO4衬底的氮化镓单晶制备方法,其特征在于,步骤(2)中所述缓冲层生长采用高温AlN HVPE方法,温度设置为1000~1600℃,厚度为50~3000nm并在步骤(3)中进行高温1600~1700℃还原或惰性环境下退火处理。

7.如权利要求1所述的基于ScAlMgO4衬底的氮化镓单晶制备方法,其特征在于,步骤(2)中所述缓冲层生长采用低温GaN HVPE方法,温度设置为300~800℃,厚度约20~500nm并在步骤(3)中进行950~1100℃退火处理。

8.如权利要求1所述的基于ScAlMgO4衬底的氮化镓单晶制备方法,其特征在于,步骤(3)与步骤(4)之间还包括对所述ScAlMgO4衬底底面与侧面进行低温AlN溅射沉积处理,温度设置为300~800℃,厚度不超过50nm。

9.如权利要求1所述的基于ScAlMgO4衬底的氮化镓单晶制备方法,其特征在于,步骤(4)采用HVPE方法,进一步还包括维持GaN单晶厚膜继续生长与形貌的方法:

①不断增加温度,增加幅度为GaN单晶厚膜每增长1mm温度增加1~10℃;②不断增加NH3;增加幅度为GaN单晶厚膜每增长1mm NH3(或相应的V/III)增加5%~50%。

10.基于ScAlMgO4衬底的氮化镓单晶,其特征在于,所述基于ScAlMgO4衬底的氮化镓单晶采用如权利要求1至权利要求9中任一项所述的制备方法制备而得到。

2

CN 111607824 A

说 明 书

基于ScAlMgO4衬底的氮化镓单晶及其制备方法

1/4页

技术领域

[0001]本发明涉及半导体技术领域,具体涉及一种基于ScAlMgO4衬底的氮化镓单晶及其制备方法。

背景技术

[0002]GaN是第三代宽禁带半导体的典型代表,已被广泛应用于半导体照明、微波功率器件和电力电子器件等方面,展现出巨大的应用前景。用于氮化镓生长的最理想衬底自然是氮化镓单晶材料,这样的同质外延(即外延层和衬底是同一种材料)可以大大提高外延膜的晶体质量,降低位错密度,提高器件工作寿命,提高发光效率,提高器件工作电流密度。但是氮化镓单晶生长困难,价格昂贵,大规模化同质外延生长目前仍然没有可能。因此,目前氮化镓单晶制备仍然采用异质外延,如硅衬底、蓝宝石衬底、碳化硅衬底等。[0003]目前基本上所有的商业化GaN衬底(晶圆,基片)都是通过HVPE制造的。但是其尺寸通常还是局限在2寸,更大的尺寸比如4英寸受到了曲率半径的限制。而HVPE由于采用异质外延,晶格常数和热膨胀数造成的应力会引起氮化镓在长厚时或冷却时开裂。

[0004]现有的解决方法是在蓝宝石表面先用MOCVD生长几微米GaN薄膜并进行界面处理形成各种掩模,一方面减少生长时的起始缺陷并形成应力屈服型衬底,从而使GaN生长的临界厚度尽可能大比如达到几百微米甚至几个毫米;另一方面是制造弱界面,这样可以在降温时由于热膨胀数不同引入的切应力来造成GaN和蓝宝石或其他衬底的自动剥离。这种方法的本质是通过插入一个在异质衬底界面上的过渡层,达到降低生长时的位错和应力的目的,并使生长的氮化镓在降温时与衬底如蓝宝石容易剥离。[0005]然而此类方法存在不足:以蓝宝石为基础的HVPE由于采用晶格失配常数达-13.9%的异质材料,其生长的氮化镓晶体位错比较高,同时由于应力曲率半径在10米以下限制了到4寸的拓展,同时剥离和降位错工艺复杂造成良率低,最后只能采用单片法造成生产成本过于高昂。

发明内容

[0006]本发明针对以上问题以及现有技术缺点,做出研究改进,提供一种基于 ScAlMgO4衬底的氮化镓单晶及其制备方法,本发明采用了与GaN晶格常数非常接近的ScAlMgO4作为HVPE生长的衬底,通过在ScAlMgO4衬底沉积缓冲层,在生长时得到位错密度在1E6cm-2以下的GaN晶体。

[0007]具体而言,本发明提供的基于ScAlMgO4衬底的氮化镓单晶制备方法,包括以下步骤:[0008](1)提供ScAlMgO4衬底;[0009](2)在所述ScAlMgO4衬底表面进行缓冲层生长;[0010](3)所述缓冲层进行退火处理;[0011](4)于所述缓冲层上生长GaN晶体;

3

CN 111607824 A[0012]

说 明 书

2/4页

(5)降温,GaN晶体自所述ScAlMgO4衬底自动剥离。

[0013]作为本发明的优选设置,所述ScAlMgO4衬底为圆形或正六边形。[0014]作为本发明的优选设置,所述ScAlMgO4衬底表面经过抛光处理,其具有原子层表面,表面粗糙度不超过0.5nm,其c-planeOFFCUT在0~1.5度。[0015]作为本发明的优选设置,步骤(2)中所述缓冲层生长采用低温AlN溅射法,温度设置为300~800℃,AlN厚度在10~300nm,并在步骤(3)中对所述缓冲层于H2/N2环境下进行高温退火处理。

[0016]作为本发明的优选设置,步骤(2)中所述缓冲层生长为采用MOCVD方法生长的AlN薄膜模板,厚度为1~10um.

[0017]作为本发明的优选设置,步骤(2)中所述缓冲层生长采用高温AlNHVPE 方法,温度设置为1000~1600℃,厚度为50~3000nm并在步骤(3)中进行高温1600~1700℃还原或惰性环境下退火处理。

[0018]作为本发明的优选设置,步骤(2)中所述缓冲层生长采用低温GaNHVP E方法,温度设置为300~800℃,厚度约20~500nm并在步骤(3)中进行9 50~1100℃退火处理。[0019]作为本发明的优选设置,步骤(3)与步骤(4)之间还包括对所述ScAlMg O4衬底底面与侧面进行低温AlN溅射沉积处理,温度设置为300~800℃,厚度不超过50nm。[0020]作为本发明的优选设置,步骤(4)采用HVPE方法,进一步还包括维持G aN单晶厚膜继续生长与形貌的方法:[0021]①不断增加温度,增加幅度为GaN单晶厚膜每增长1mm温度增加1~1 0℃;[0022]②不断增加NH3;增加幅度为GaN单晶厚膜每增长1mmNH3(或相应的V/III)增加5%~50%。

[0023]本发明还提供一种基于ScAlMgO4衬底的氮化镓单晶,所述基于ScAlMgO4衬底的氮化镓单晶采用如权利要求1至权利要求9中任一项所述的制备方法制备而得到。[0024]本发明的有益效果:首先,通过本发明提供的工艺生长的晶体有效降低了位错;其次,本发明不需要使用复杂的MOCVD沉积GaN并预处理以制作掩模或分离层的工艺,有效降低了生产成本;再次,相比于传统衬底如蓝宝石,本发明具有更高的质量与更大的曲率半径,对于生长4英寸以上的GaN来说,不会造成OFFCUT不均匀的问题;最后,本发明可以实现连续生长成厚度高达5 毫米以上的晶棒,进一步降低了成本。附图说明

[0025]图1是本发明的生产工艺流程图。

具体实施方式

[0026]以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。[0027]需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,虽图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘

4

CN 111607824 A

说 明 书

3/4页

制,其实际实施时各组件的形态、数量及比例可为一种随意的改变,且其组件布局形态也可能更为复杂。[0028]实施例1

[0029]请参阅图1,本发明提供一种基于ScAlMgO4衬底的氮化镓单晶制备方法,包括如下步骤:[0030](1)提供ScAlMgO4衬底;[0031](2)在所述ScAlMgO4衬底表面进行缓冲层生长;[0032](3)所述缓冲层进行退火处理;[0033](4)于所述缓冲层上生长GaN晶体;[0034](5)降温,将GaN晶体自所述ScAlMgO4衬底剥离。[0035]请参阅图1和步骤(1),提供ScAlMgO4衬底100。[0036]作为本实施例的优选设置,所述ScAlMgO4衬底为圆形或正多边形;更加优选地,所述ScAlMgO4衬底为圆形或正六边形。[0037]作为本实施例的优选设置,所述ScAlMgO4具有高的晶体质量,其(001) XRDFWHM通常小于20arcsec,优选地小于10arcsec;所述ScAlMgO4衬底具有原子层表面,采用CMP制备得到,CMP即化学机械抛光工艺,此处不再赘述。[0038]在步骤(2)中,基于所述ScAlMgO4衬底表面进行缓冲层生长,采用低温 AlN溅射法。在本实施例中,溅射法生产工艺采用高纯度铝靶材(5N以上), N2和Ar的混合气体环境,压力设置0.1~2Pa,优选地,低温范围设置为 300~800℃;更为优选地,低温范围设置为400~650℃;更为优选地,低温范围设置为500~600℃。[0039]作为本实施例的优选设置,步骤(3)对所述AlN缓冲层于H2/N2环境下在1200~2000℃进行退火处理;更为优选地,所述缓冲层于H2/N2环境下在 1350~1850℃进行退火处理;更为优选地,所述缓冲层于H2/N2环境下在 1600~1700℃进行退火处理。[0040]作为本实施例的优选设置,步骤(3)与步骤(4)之间还包括对所述ScAlMgO4衬底底面与侧面进行低温300~800℃优选400°AlN溅射沉积处理,以在底面与侧面形成厚度不超过50nm的保护层,避免高温生长时ScAlMgO4分解析出O2,提高生长的GaN纯度。[0041]步骤(4)采用HVPE方法,包括HCl通过Ga700~900度反应生长GaCl 作为镓源,NH3气体直接提供氮源,温度范围设置900~1100℃,V/III比2~ 1000,载气为H2/N2混合气等本领域技术人员所熟知的HVPE工艺手段,进一步还包括维持GaN单晶厚膜继续生长与形貌的方法:

[0042]①不断增加温度,增加幅度为GaN单晶厚膜每增长1mm温度增加1~1 0℃;[0043]②不断增加NH3;增加幅度为GaN单晶厚膜每增长1mmNH3(或相应的V/III)增加5%~50%。

[0044]本发明还提供一种基于ScAlMgO4衬底的氮化镓单晶,所述基于ScAlMgO4衬底的氮化镓单晶基于以上制备方法制备而得到。[0045]实施例2

[0046]本发明还提供一种基于ScAlMgO4衬底的氮化镓单晶制备方法,本实施例中所述的基于ScAlMgO4衬底的氮化镓单晶制备方法与其他实施例中所述的制备方法大致相同,区别在于:实施例2步骤(2)中所述缓冲层生长采用MOCVD 方法生长薄膜模板厚度1~10um,其

5

CN 111607824 A

说 明 书

4/4页

(102)XRDFWHM小于320arcsec,优选地小于240arcsec。MOCVD方法为本领域技术人员所熟知,其原理在此不做赘述。

[0047]步骤(3)中于MOCVD炉中原位退火,即低温生长结束后升温到1000℃进行退火处理。

[0048]实施例3

[0049]本发明还提供一种基于ScAlMgO4衬底的氮化镓单晶制备方法,本实施例中所述的基于ScAlMgO4衬底的氮化镓单晶制备方法与其他实施例中所述的制备方法大致相同,区别在于:本实施例中步骤(2)中所述缓冲层生长采用高温 AlNHVPE方法。优选地,在HVPE工艺条件下,温度设置为1000~1600℃;更为优选地,温度设置为1200~1600℃;更为优选地,温度设置为1500~1600℃ ,厚度为50~3000nm.[0050]作为本发明实施例3的优选设置,采用AlNHVPE方法所制备的缓冲层,可以允许不进行退火处理,也可以在步骤(3)中进行高温1600~1700℃还原环境下退火处理。[0051]实施例4

[0052]本发明还提供一种基于ScAlMgO4衬底的氮化镓单晶制备方法,本实施例中所述的基于ScAlMgO4衬底的氮化镓单晶制备方法与其他实施例中所述的制备方法大致相同,区别在于,步骤(2)中所述缓冲层生长采用低温GaNHVPE方法。优选地,在HVPE工艺条件下,温度设置为300~800℃;更为优选地,温度设置为400~700℃;更为优选地,温度设置为500~600℃。厚度约20~ 500nm;更为优选地,温度设置为50~100nm。[0053]作为本发明实施例3的优选设置,采用低温GaNHVPE方法所制备的缓冲层在步骤(3)中进行950~1100℃退火处理。[0054]最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围。[0055]此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在上面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。公开于该背景技术部分的信息仅仅旨在加深对本发明的总体背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。

6

CN 111607824 A

说 明 书 附 图

1/1页

图1

7

因篇幅问题不能全部显示,请点此查看更多更全内容