您的当前位置:首页Hanoi塔问题 实验报告

Hanoi塔问题 实验报告

来源:小侦探旅游网
实验一 (3)

一、实验题目:顺序表的应用

二、实验内容:Hanoi塔问题。(要求4个盘子移动,输出中间结果) 三、设计分析:

首先把三根柱子按顺序排成品字型,把所有的圆盘按从大到小的顺序放在柱子A上,根据圆盘的数量确定柱子的排放顺序:若n为偶数,按顺时针方向依次摆放 A B C; 若n为奇数,按顺时针方向依次摆放 A C B。

(1)按顺时针方向把圆盘1从现在的柱子移动到下一根柱子,即当n为偶数时,若圆盘1在柱子A,则把它移动到B;若圆盘1在柱子B,则把它移动到C;若圆盘1在柱子C,则把它移动到A。

(2)接着,把另外两根柱子上可以移动的圆盘移动到新的柱子上。即把非空柱子上的圆盘移动到空柱子上,当两根柱子都非空时,移动较小的圆盘。这一步没有明确规定移动哪个圆盘,你可能以为会有多种可能性,其实不然,可实施的行动是唯一的。 (3)反复进行(1)(2)操作,最后就能按规定完成汉诺塔的移动。 所以结果非常简单,就是按照移动规则向一个方向移动金片: 如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C 四、程序代码: #include using namespace std; int m=0;

void move(char A,int n,char C) {

cout<void hanoi(int n,char A,char B,char C) {

if(n==1)

{move(A,1,C); m=m+1;}

else{hanoi(n-1,A,C,B); move(A,n,C);

hanoi(n-1,B,A,C); m=m+1;} }

void main() {int n;

cout<<\"请输入圆盘的个数N=\"; cin>>n;

cout<<\"移动的方法如下:\"<cout<<\"移动总次数:\"<}

五、测试用例:

六、实验总结

通过这次实验,对于顺序表的相关知识有了更加深刻的认识,虽然中间出了很多问题,但是经过查阅资料,请教同学,对程序进行调试以后都得以解决。提高了自己的动手能力,更好的理解的相关知识。

因篇幅问题不能全部显示,请点此查看更多更全内容