半导体的出现成为20世纪现代物理学的一项最重大的突破,标志着电子技术的诞生。而由于不同领域的实际需要,促使半导体器件自此分别向两个分支快速发展,其中一个分支即是以集成电路为代表的微电子器件,而另一类就是电力电子器件,特点是功率大、快速化。自20世纪五十年代末第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台,以此为基础开发的可控硅整流装置,是电气传动领域的一次革命,使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子的诞生。
电子电力技术包括电力电子器件、变流电路和控制电路3部分,是以电力为处理对象并集电力、电子、控制三大电气工程技术领域之间的综合性学科。电力技术涉及发电、输电、配电及电力应用,电子技术涉及电子器件和由各种电子电路所组成的电子设备和系统,控制技术是指利用外加的设备或装置使机器设备或生产过程的某个工作状态或参数按照预定的规律运行。电力电子器件是电力电子技术的基础,电力电子器件对电能进行控制和转换就是电子电力技术的利用。在21世纪已经成为一种高新技术,影响着人们生活的各种领域,因此对对电子电力技术的研究具有时代意义。 传统电力电子技术是以低频技术处理的,现代电力电子的发展向着高频技术处理发展。其发展先后经历了整流器时代、逆变器时代和变频器时代,在不断的发展中促进了现代电力电子技术的广泛应用。电力电子技术在1947年晶体管诞生开始形成,接着1956的晶闸管的出现标志电力电子技术逐渐形成一门学科开始发展,以功率MOS-FET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件的出现,表明已经进入现代电子电力技术发展时代。 1.整流器时代
在60年代到70年代被称为电力电子技术的整流时代。该期间主要是大功率硅整流管和晶闸管的开发与应用。1948年的晶体管的出现引发了电子工业革命,半导体器件开始应用与通信领域,1957年,晶闸管的诞生扩展了半导体器件功率控制范围,属于第一代电力电子器件。大功率硅整流器能够高效率地把工频交流电转变为直流电,当地办硅整流器厂逐渐增多,大功率的工业用电由工频50Hz)交流发电机提供,其中电解、牵引、和直流传动是以直流形式消费。 2.逆变器时代
20世纪70年到80年代期间成为逆变器时代,该期间的电力电子技术已经能够实现逆变,但是仅局限在中低频范围内。当时变频调速装置因为能节能大量普及,巨型功率晶体管(GTR)、门极可关断晶闸管(GTO)和大功率逆变用的晶闸管成为当时电力电子器件的主流。它们属于第二代电力电子器件。 3.变频器时代
进入80年代,功率MOSFET和绝缘栅极双极晶体管(IGBT)的问世,电力电子技术开始向高频化发展,高压、高频和大电流的功率半导体复合器件为第三代电器元件的大规模集成电路技术迅速发展,他们的性能更进一步得到了完善,具有小、轻和高效节能的特点。 4.现代电力时代
20世纪以来,电力电子作为自动化、节材、节能、机电一体化、智能化的基础,正朝着应用技术高频化、产品性能绿色化、硬件结构模块化的现代化方向发展。在1995年,功率MOSFET和GTR在功率半导体器件出现并广泛被人们应用,功率器件和电源单元的模块
化,使用方便,缩小整机体积,器件承受的电应力降至最低,提高系统的可靠性。电子电力技术具有全控化、电路形式弱电化、集成化、高频化和数字化的特点。更能带来节能、节省材料和减少污染的经济效益和生态效益,能控制精度高、避免模拟信号的畸变失真,减小杂散信号的干扰,改善了工作条件。
进入90年代电力电子器件的研究和开发,已进入高频化,标准模块化,集成化和智能时代。从理论分析和实验证明电气产品的体积与重量的缩小与供电频率的平方根成反比,也就说, 当我们将50Hz的标准二频大幅的提高之后,使用这样工频的电气设备的体积与重量就能大大缩小,使电气设备制造节约材料,运行时节电就更加明显,设备的系统性能亦大为改善,尤其是对航天工业其意义十分深远的。故电力电子器件的高频化是今后电力电子技术创新的主导方向,而硬件结构的标准模块是器件发展的必然趋势,目前先进的模块,已经包括开关元件和与其反向并联的续流二极管在内及驱动保护电路多个单元,并都以标准化和生产出系列产品,并且可以在一致性与可靠性上达到极高的水平。目前世界上许多大公司已开发出IPM智能化功率模块,如日本三菱、东芝及美国的国际整流器公司已有成熟的产品推出。 电力电子技术作为现在不可缺少的一门科学技术,在生活生产的各个方面都得到了广泛的应用: 1.工业领域
在工业中,大部分都使用的是交直流电动机。例如数控机床的伺服电机、轧钢机和矿山牵引、大型鼓风机等等都采用电子交直流技术。在大量的冶金工业中的高频和中频感应加热电源、淬火电源及直流电弧炉电源也大量的采用电力电子技术。在水里电厂蓄能机组中,大型机组工作状态的调速好改变也采用现代电力电子技术的变流装置,当负荷降低时,将下游的水抽到水库,储存能量,以调节电力系统的供电量。 2.交通运输
交通业的发展也离不开电子电力技术,电气机车中的交流机车和直流机车分别采用变频装置和整流装置,车辆中的各种辅助电源都离不开电力电子技术。特别是飞机、船舶需要更多不同种类的电源,他们的运输就更需要电力电子技术的支持。电梯也开始使用交流变频调速,铁道车辆运用了直流斩波器,火车将由PWM逆变交流牵引系统取代原来的直流系统。磁悬浮列车也是同样采用电机传动,超导磁浮铁道系统为各先进国家关注的热点。一旦成功,将使火车时速高达500km。这将大大提高运力,缓解交通运输对国民经济发展的制约。地铁、轻轨车及机车牵引,已是电力电子技术的应用领域。 3.传统产业
通过电力电子技术对电能的处理,使电能的使用达到合理、高效和节约,实现了电能使用最佳化。在一定程度上将信息处理与功率处理合一,使微电子技术与电力电子技术一体化,据预测,以后绝大部分电源都要经过电力电子技术处理后使用,为传统产业和新兴产业采用微电子技术创造了条件。在现代电力电子技术的支撑下,改善了劳动的恶劣环境,把工人带入到现代化的智能工作室,使得传统产业的劳动力强度有所降低,工作效率提高,进而改造了传统产业。特别当应用于化石燃料电站和核电站中的时候,电力电子技术的能良好的控制其存在的安全隐患与环境污染。 4.家用电器
现代化电力电子技术以全控型新器件及各种PWM电路为代表,广泛应用于交流调速系统,交流电气牵引及家用电器等领域。人们开始享受到了电力电子技术带来的恩惠。电视机、电冰箱、微波炉、电子计算机、洗衣机、电热水器等都是应用电力电子技术发展而来的。例如高频荧光灯比白炽灯效率高2倍~3倍,变频空调器的使用就能节约30%的电能。电力电子技术使得家用电器日益向智能化发展,使人们享受科学技术带来的美好享受。 电力电子技术的创新与电力电子器件制造工艺,已成为世界各国工业自动化控制和机电
一体 化领域竞争最激烈的阵地,各发达国家均在这一领域注入极大的人力,物力和财力,使之进 入高科技行业,就电力电子技术的理论研究而言,目前日本、美国及法国、荷兰、丹麦等西欧 国家可以说是齐头并进,在这些国家各种先进的电力电子功率量不断开发完善,促进电力电 子技术向着高频化迈进,实现用电设备的高效节能,为真正实现工控设备的小型化,轻量化 ,智能化奠定了重要的技术基础,也为21世纪电力电子技术的不断拓展创新描绘了广阔的前景。我国开发研制电力电子器件的综合技术能力与国外发达国家相比,仍有较大的差距,要发展和创新我国电力电子技术,应该牢牢坚持和掌握产、学、研相结合的方法走共同发展之路。从跟踪国外先进技术,逐步走上自主创新,从交叉学科的相互渗透中创新,从器件开发选择及电路结构变换上创新,这对电力技术创新是尤其实用的。也要从器件制造工艺技术引导创新,从新材料科学的应用上创新,以此推动电力电子器制造工艺的技术创新,提高器件的可靠性。由此形成基础积累型的 创新之路。并要把技术创新与产品应用及市场推广有机结合,已加快科技创新的自我强化的 循环,促进和带动技术创新有着稳定的基础,以使我国电力电子技术及器件制造工艺技术有以长足的发展,推动我国工业领域由粗 板型经营走向集型,促进国民经济以高速、高度、可持续发展 1电力电子技术的发展
现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 2现代电力电子的应用领域 2.1计算机高效率绿色电源
高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进入了电子、电器设备领域。 2.2通信用高频开关电源
通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。 因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。
2.3直流-直流(DC/DC)变换器
DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。
通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。 2.4不间断电源(UPS)
不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。
现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。
目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。 2.5变频器电源
变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。
2.6高频逆变式整流焊机电源
高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。
逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。 2.7电力有源滤波器
传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。 电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(1)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。 2.8分布式开关电源供电系统
分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。 分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。 3高频开关电源的发展趋势
在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电
镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。 现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。 4总结
总而言之,电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。 参考文献:
[1]周明宝.电力电子技术[M].北京:机制工业出版社,1985.
[2]陈国呈,周勤利.变频技术研究[J].上海大学自动化学院学报,1995(6):23-26. [3]王正元.面向新世纪的电力电子技术电源技术应用,2001
因篇幅问题不能全部显示,请点此查看更多更全内容