概率与统计高考解答题(文科)专题
1、(2018全国新课标Ⅱ文、理)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.
2、(2018全国新课标Ⅲ文、理)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,,17)建立模型
ˆ30.413.5t;①:y根据2010年至2016年的数据(时间变量t的值依次为1,2,,7)
ˆ9917.5t. 建立模型②:y(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:
第一种生产方式 第二种生产方式 超过m 不超过m (3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
n(adbc)2P(K2k)0.0500.0100.001附:K,.
(ab)(cd)(ac)(bd)k3.8416.63510.8282
3、(2018全国新课标Ⅰ文)某家庭记录了未使用节水龙头50天的日用水量数据(单位:
m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下: 未使用节水龙头50天的日用水量频数分布表 日用0,0.10.1,0.20.2,0.30.3,0.40.4,0.50.5,0.60.6,0.7水 量 频1 3 2 4 9 26 5 数 使用了节水龙头50天的日用水量频数分布表 日用0,0.1 0.1,0.2 0.2,0.3 0.3,0.4 0.4,0.5 0.5,0.6 水量 5 13 10 16 5 频数 1 (1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:
(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)
4、(2017全国新课标Ⅰ文)为了监控某种零件的一条生产线的学科*程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸: 2 3 4 5 6 7 8 抽取次序 1 10.12 9.96 9.96 10.01 9.92 9.98 10.04 零件尺寸 9.95 10 11 12 13 14 15 16 抽取次序 9 10.13 10.02 9.22 10.04 10.05 9.95 零件尺寸 10.26 9.91 11611611622xi9.97,s经计算得x(xix)(xi16x2)0.212,16i116i116i1(i8.5)i1162其中xi为抽取的第i个零件的尺寸,18.439,(xix)(i8.5)2.78,
i116i1,2,,16.
(1)求(xi,i)(i1,2,,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|0.25,则可以认为零件的尺寸不随生
产过程的进行而系统地变大或变小).
(2)一天内抽检零件中,如果出现了尺寸在(x3s,x3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(ⅱ)在(x3s,x3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)
r(x,y)附:样本ii(i1,2,,n)的相关系数
(xx)(yy)iii1n(xx)(yy)2iii1i1nn2,0.0080.09
5、(2017全国新课标Ⅱ文)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:
(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率; (2)填写下面列联表,学*科网并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50 kg 箱产量≥50 kg 旧养殖法 新养殖法 (3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较. 附: P() 0.050 0.010 0.001 k 3.841 6.635 10.828 2n(adbc)2K.
(ab)(cd)(ac)(bd)
6、(2016全国Ⅰ文)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
频数2420161060161718192021更换的易损零件数
记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数. (I)若n=19,求y与x的函数解析式;
(II)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;
(III)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?
7、(2016全国Ⅱ文)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数 保费 0 1 2 3 4 5 2a 0.85a a 1.25a 1.5a 1.75a 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表: 出险次数 频数 0 60 1 50 2 30 3 30 4 20 5 10 (Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值; (Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”. 求P(B)的估计值;
(III)求续保人本年度的平均保费估计值.
8、(2016全国Ⅲ文、理)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图
(I)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明; (II)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注: 参考数据:
yi17i9.32,tiyi40.17,i17(yy)ii1720.55,7≈2.646.
参考公式:相关系数r(tt)(yy)iii1n(tt)(y2ii1i1nn ,iy)2回归方程yab 中斜率和截距的最小二乘估计公式分别为:
b(ti1nit)(yiy),aybt.
i(ti1nt)2
因篇幅问题不能全部显示,请点此查看更多更全内容