PerformanceAnalysisofML-BasedFeedbackCarrier
PhaseSynchronizersforCodedSignals
NeleNoels,HeidiSteendam,Member,IEEE,andMarcMoeneclaey,Fellow,IEEE
Abstract—Thispaperconsiderscarrierphaserecoveryintrans-missionsystemswithaniterativelydecodableerror-controlcode[turbocodes,low-densityparitycheck(LDPC)codes],whoselargecodinggainsenablereliablecommunicationatverylowsignal-to-noiseratio(SNR).Wecomparethreetypesoffeedbackphasesynchronizers,whichareallbaseduponthemaximum-like-lihood(ML)estimationprinciple:adata-aided(DA)synchronizer,anon-code-aided(NCA)synchronizer,andaniterativecode-aided(CA)synchronizer.Weintroduceablockwiseforward–backwardrecursivephaseestimator,andweshowthatthemean-squarephaseerror(MSPE)oftheNCAsynchronizerequalsthatoftheDAsynchronizerwhenthecarrierphaseisconstantandtheloopfiltergainisthesameforbothsynchronizers.Whenthesignalisaffectedbyphasenoise,theNCAsynchronizer(ascomparedwiththeDAsynchronizer)yieldsalargerMSPEduetophasefluctuations.Wealsoshowthat,atthenormaloperatingSNRoftheconsideredcode,theperformanceoftheCAsynchronizerisveryclosetothatofaDAsynchronizerthatknowsalltransmittedsymbolsinadvance.
IndexTerms—Carriersynchronization,errorcontrolcoding,feedbackphaseestimation.
I.INTRODUCTION
HElastdecadehasseenthedevelopmentofpowerfulerrorcorrectingcodessuchasturbocodesandlow-densityparitycheck(LDPC)codes.Theimpressivebiterrorrate(BER)performanceoftheassociatediterativedecodingprocessesim-plicitlyassumescoherentdetection,meaningthatthecarrierphasemustberecoveredaccuratelybeforethedataisdecoded.However,sincethedecoderusuallyoperatesatextremelylowsignal-to-noiseratio(SNR)values,accuratecarrierrecoveryisachallengingtask.Numerouseffortstotacklethisproblemhaveresultedinamyriadofdifferentreceivers[1]–[10].
In[1]and[2],thephaseestimatorignoreserror-controlcodingandassumesthatthetransmittedsymbolsaremutuallyindependent[non-code-aided(NCA)operation],whereasin[3]–[10],thecodepropertiesareexploitedinthephaseesti-mationprocess(CAoperation).In[11],itwasshownthatthesecondapproachispotentiallymoreaccurate.
Theiterativeschemein[5],whichisbasedontheexpecta-tion-maximizationalgorithm,isoptimalinthesensethatitcon-vergestothetruemaximum-likelihood(ML)carrierphaseesti-mate[12],[13].Thealgorithmdoesnotrequiremodificationof
ManuscriptreceivedSeptember2,2005;revisedApril11,2006.Theasso-ciateeditorcoordinatingthereviewofthismanuscriptandapprovingitforpub-licationwasDr.MounirGhogho.
TheauthorsarewiththeTelecommunicationsandInformationProcessingDepartment,GhentUniversity,B-9000Ghent,Belgium(e-mail:nnoels@telin.ugent.be;hs@telin.ugent.be;mm@telin.ugent.be).DigitalObjectIdentifier10.1109/TSP.2006.887108
T
thedecoderoperation,andtheresultingreceiverisonlymargin-allymorecomplexthantheconventionalreceiverthataprioriknowstheexactvalueofthephase.Unfortunately,itsperfor-mancerapidlydegradesinthepresenceofatime-varyingcar-rierphase.
In[2],[6]–[8],and[10],feedbackphaseestimationhasbeenadoptedtocopewithcarrierphasevariations.TheML-basedre-ceiverproposedin[10]combinesthelowcomplexityfromtheapproachin[5]withtheabilitytoautomaticallytrackaslowlyvaryingcarrierphase.Simulationresultsin[10]showtheinter-estingpotentialofthisapproach.Asopposedtothealgorithmsin[2],[6],and[7],thederivationofthephaseestimationalgo-rithmstemsdirectlyfromtheMLcriterionandcanthereforebeseenasthefeedbackcounterpartofthereceiverpresentedin[5].Moreover,itscomputationalcomplexityislowerthanthatofthealgorithmsin[8]and[9],whichmodifythedecoderoper-ationbyeithertakingintoaccountthephasestatisticsorusingper-survivorphaseestimatesinsidethedecoder.
Thiscontributionzoomsinontheapproachthatwasadoptedin[10].Bymeansoftheoreticalanalysisandcomputersimu-lations,wecomparethetrackingperformancesresultingfromtheiterativecode-aided(CA)synchronizerfrom[10],thedata-aided(DA)synchronizer,whichknowsalltransmittedsymbolsinadvance,andtheNCAsynchronizer,whichneglectstheun-derlyingencodingrule.ItisshownthatCAfeedbackphasees-timationoutperformsNCAfeedbackestimationwhenthephasetobeestimatedvarieswithtime;whenthecarrierphaseiscon-stantovertheobservationinterval,bothsynchronizersyieldes-sentiallythesamemean-squarephaseerror(MSPE).Wealsoshowthat,atthenormaloperatingSNRoftheconsideredcode,theperformanceoftheCAsynchronizerisveryclosetothatofaDAsynchronizerthatknowsalltransmittedsymbolsinad-vance.ThisillustratestheoptimalityoftheCAsynchronizer.
II.MAXIMUM-LIKELIHOODCRITERION
Weconsiderthetransmissionofanarbitrarysequenceof
overancomplex-valuedsymbols
additivewhiteGaussiannoise(AWGN)channel.Thejoint
isdenotedasprobabilitymassfunctionofthesymbols
.Assuminglinearmodulationusingsquare-rootNyquisttransmitpulses,andmatchedfilteringatthecorrectdecisioninstants,thediscrete-timebasebandobservationisgivenby
(1)
where
1The
denotestheunknowncarrierphase,1andthesequenceconsistsofindependentzero-meancomplex-valued
carrierphaseisinitiallyassumedtobeconstantovertheobservation
interval.Later,theobservationmodelwillbeextendedtoallowatime-varyingcarrierphase.
1053-587X/$25.00©2007IEEE
1130Gaussiannoiseterms;andarestatistically
independentandhaveavarianceequalto
.Letusdenotebyatrialvalueofthetruecarrierphasethathastobeestimatedbythesynchronizer.Then,theMLestimateofthecarrierphaseisthevalueofthatmakeszerothederiva-tiveofthelog-likelihoodfunctionwithre-spectto[14].Theprobabilitydensityofresultingfrom(1),giventhedatasequenceandatrialvalueofthecarrierphase,is(withinafactornotdependingon)givenby
(2)
Thelikelihoodfunctionofthecarrierphaseisobtained
byaveraging
overthesymbolvector,i.e.,.Fromasimilarreasoningasin[5]and[11],thederivative
ofthelog-likelihoodfunctionwithrespecttocanbemanipulatedintothefollowingform:
(3)
where
(4)
istheaposterioriexpectationofthesymbolcondi-tionedonand,withdenotingthemarginalaposterioriprobability(APP)ofthesymbol,and
thesetofconstellationpointswithsymbol
energy
.Whenthedatasymbolvectorconsistsofknownpilotsym-bols,weobtainequal
to1for
andzerootherwise,yieldingin(4).Thelog-likelihoodfunctionthatcorrespondstothetrans-missionofpilotsymbolsisdenoted.
Inthecaseofuncodedtransmission,thesymbolsare
statisticallyindependent,sotheAPPsof
reduceto(5)
where
(6)
As(5)dependsonlyon,wewilldenotethecorrespondingaposterioriaverageofthesymbolas.Thelog-likelihoodfunctionthatcorrespondstothetransmissionofsta-tisticallyindependentsymbolsisdenoted.
Thispaperconsiderssystemswithaniterativelydecodableerror-controlcode(turbo,LDPCcodes).Thedatasymbolvector
isobtainedfromtheencodingofase-quenceofinformationbitsandapropermappingofthecoded
IEEETRANSACTIONSONSIGNALPROCESSING,VOL.55,NO.3,MARCH2007
Fig.1.Generalstructureofadiscrete-timefeedbackcarriersynchronizer.
bitsonthesignalconstellation.Inthiscase,theAPPsin(4)are
afunctionofallcomponentsofthevector.Toavoidthecom-putationalcomplexityassociatedwiththeirexactevaluation,2themarginalAPPsareapproximatelycomputedbymeansoftheiterativeapplicationofthesum–product(SP)algorithmonafactorgraphwithcycles[15].Ifthecyclesinthegrapharelarge(whichisreasonableforwell-designedturboandLDPCcodes),thisiterativeprocedure(afterconvergence)yieldsmar-ginalAPPsthatareveryclosetothecorrectmarginalAPPs.The
correspondinglog-likelihoodfunctionisdenoted
.III.ML-BASEDPHASETRACKINGFORCODEDSIGNALSThegeneralstructureofafirstorderdiscrete-timefeedback
carriersynchronizerorphase-lockedloop(PLL)isshowninFig.1[16].Thephaseestimateisupdatedoncepersymbolin-terval,accordingtothefollowingforward3recursion
(7)
In(7),istheloopfiltergain,and
denotesthephaseerrordetector(PED)output.Therecursionstartswithaninitialphaseestimate,thatcanbeobtainedfromafeedforwardsynchro-nizeroperatingonashortpilotsequence[16].
Inthefollowing,weconsiderthreetypesofML-basedPEDs.
TheDAPED(basedon
)assumesthatalldatasymbolsareknown.TheNCAPED(basedon)assumesthatthedatasymbolsareindependent,whereastheCAPED(basedon
)takesthecodepropertiesintoaccount.Weobtain
from(3)that
DAoperationNCAoperationCAoperation
(8)
ComparisonofthePEDoutputsforNCAandCAoperationwiththatforDAoperationindicatesthattheaposteriorimeancanbeconsideredasasoftdecision(SD)regarding,based
uponthereceivedsample
orthereceivedsamplesequenceandthephaseestimate.Notefrom(8)thattheDAand
theNCAPEDoutputdependonlyon
;thisisincon-trastwiththeCAPEDoutputwhosecomputationdependson
theentirevector:allsamples
havetobe2Inprinciple,the
exactmarginalAPPsPr[ajr;]canbeobtainedasasum-mationofjointAPPsPr[ajr;],which,inturn,canbecomputedfrom(2)and
Bayes’rule.However,thecomputationalcomplexityofthisprocedureincreasesexponentiallywiththesequencelengthK.
3Wespeakofaforwardrecursionwhenthephaseupdatingisperformedfromthefirstsymbolintervaltothelast.
NOELSetal.:PERFORMANCEANALYSISOFML-BASEDFEEDBACKCARRIERPHASESYNCHRONIZERSFORCODEDSIGNALS1131
rotatedoveranangleandfedtotheSPalgorithmforpro-ducingtheSD
.Hence,inthecaseofCAoperation,theentirereceivedblockmustbeprocessed
times,whereasthereceivedblockisprocessedonlyonceinthecaseofDAorNCAoperation.
InordertoavoidthehighcomputationalcomplexityresultingfromtheCAPED,thefollowingiterativeCAPLLhasbeenproposedin[10].Duringthethiteration,thefeedbacksyn-chronizergeneratesestimatesessentiallyaccordingto(7),butwiththePEDoutputgivenby
iterativeCAoperation
(9)
where
,andistheaposterioriexpectationofthesymbolconditionedonand.Hence,fromthephasevector,there-ceivedvectorisprocessedtocompute
for,afterwhichthePLLgeneratesthephasevector
.Theiterativeprocessisinitializedbymeansofaphasevector,whichcanbeobtainedfromaPLLwithNCAop-eration.Whenconvergenceisachievedafteriterations,thevectorhasbeenprocessedtimes.When,considerablesavingsincomputationtimehavebeenobtainedascomparedwiththenoniterativePLLthatusestheCAPEDoutputfrom(8).Moreover,whenappliedtoaturboorLDPCreceiverwithiterativeMAPdetection/decoding,theproposedphaseestimation/compensationschemeyieldsverylowadditionalcomplexitywhenthesynchronizeriterationsaremergedwiththedecoderiterations[4],[5],[10],i.e.,aftereachsynchronizeriterationonlyonedecoderiterationisperformedwithoutresettingextrinsicprobabilities.
IV.TRACKINGPERFORMANCEANALYSIS
A.AnalyticalResults
ComputingtheexacttrackingperformanceoftheiterativeCA
feedbackphaseestimatorismuchmoredifficultthanfortheNCAandDAsynchronizers,becauseoftheiterationsinvolvedandthedependenceofthesoftdecisionsontheentirephasevector.Instead,wewillproceedassumingthat,atthenormalop-eratingSNRoftheconsiderederror-correctingcode,theMSPEresultingfromtheiterativeCAphaseestimatorconvergestotheMSPEresultingfromafictitiousDAphaseestimatorthatknowsalldatasymbolsinadvance.
Amotivationforthisassumptionreadsasfollows.Notethatin(8)theCAPEDoutputreducestotheDAPEDoutputwhentheAPPisonefor
andzerootherwise.ThisindicatesthattheCAPLLessen-tiallybehavesliketheDAPLL,providedthattheratios
arelikelytobe
muchsmallerthan1forallandall.Letusintroducetheindicatorfunction,whichequalsone
when
foratleastone,andequals
zerootherwise.Then,weobtain
(10)
wheredenotesthesetoflegitimatecodedsymbolsequences
oflength.Weassumethat
forandotherwise,wherethequantitiesanddenotethe
rateofthecodeandthenumberofconstellationpoints,respec-tively.Withandforall,(10)isnothingbutthe(verysmall)symbolerrorrateresultingfromanoptimalmax-imumaposterioriprobabilitysymboldecoder[17].Hence,forsmallphaseerrors,thefractionofsymbolintervalsforwhich
isverysmall,sothatwecansafelyassumethatthe
CAPLLoperationcloselyresemblestheDAPLLoperation,atthenormaloperatingSNRofthecode.
WewillnowcomputetheperformanceoftheDAandtheNCAphaseestimator.AssumingthatatthelowSNRsupportedbycapacity-approachingcodes,itisnotpossibletocomputere-liabledatadecisionswithouttakingintoaccountthecodestruc-ture,weexpecttheNCAPLLtoperformsignificantlyworsethanaDAPLLwithperfectknowledgeonthedatasymbols.Inordertoallowatime-varyingcarrierphase,theobservationmodel(1)ismodifiedinto
(11)
whereisthephaseduringthethsymbolinterval.Anoftenusedphasenoise(PN)modelisbasedonadiscreteWienerprocess(randomwalk)
(12)
characterizedbyindependentandidenticallydistributed(i.i.d.)
Gaussianincrements
withzeromeanandstandarddeviation,descriptiveofthephasenoiseintensity.Itisassumedthatandarestatisticallyindependent,andthatisuni-formlydistributedin.Wedefinethephaseestimationerrorduringthethsymbolperiodas.4TheDAandNCAPEDoutputsfrom(8)thatdependonlyoncanbedecomposedasthesumoftheiraverageandtheirzero-meanstatisticalfluctuation
(13)
with
(14)
denotingthePEDcharacteristicandtheloopnoiseofthesyn-chronizer,respectively.WeshowintheAppendixthat.
4This
definitionoftheestimationerroragreeswiththeframeworkin[16].Itshouldbenoted,however,thatinverseof,i.e.,accordingto^theestimationerrorisusuallydefinedasthe
0.1132Assumingsmallphaseerrors,thefollowinglinearizationapplies[16]:
(15)
whereistheslopeofthePEDcharacteristicandistheloopnoiseat.Substituting(15)into(7),weobtain
(16)
where
.WeshowintheAppendixthat
(17)
where
DAoperation
NCAoperation
(18)
and
.Solving(16)yields
(19)
Thephaseerror(19)attheoutputofthePLLconsistsoftwocontributions,whicharecausedbythenoise(AWGN,PN)af-fectingtheobservationandbytheinitialphaseerror,respec-tively.Inallpracticalcases,thequantityissmallerthan1sothatthephaseerror(19)exhibitsadecayingacquisi-tiontransientnearthestartoftheobservationinterval.Assumingauniformlydistributedinitialphaseerror,themeanacquisitiontimeintheabsenceofnoiseiswellapproximatedby[16]
(20)
where
istheone-sidebandwidth(normalizedtothesymbolrate)oftheclosed-loopfilterwithimpulse
response
and-transform.Wehave
(21)
Theapproximationin(20)and(21)isvalidforsmall.Itfol-lowsfrom(20)thatalargerresultsinafasteracquisition.Thesamegoesforalarger.Attheendoftheacquisitionperiodthephaseerrorentersthetrackingmode,duringwhich(19)canbesafelyapproximatedby
(22)
Itiseasilyseenfrom(22)thatthesteady-statephaseerrorhaszeromeanandthatthesteady-stateMSPEisgivenby
MSPE
MSPE
(23)
IEEETRANSACTIONSONSIGNALPROCESSING,VOL.55,NO.3,MARCH2007
with
MSPEMSPE
(24)
Thelinearizedsteady-stateMSPEfrom(24)consistoftwocon-tributions:anadditivenoisecontributionandaphasenoisecon-tribution.ThePNcontributionisinverselyproportionaltotheslopeofthePEDcharacteristic,whereastheAWGNcontribu-tiondoesnotdependontheslopeofPEDcharacteristic.This
isbecause,forgivenvaluesofand
,thereductionofthePEDslopeoftheNCAPLL(ascomparedwiththeDAPLL)ispreciselycompensatedbythereductionoftheloop
bandwidth
andofthephasenoisevariance.AlargervalueofyieldsalargerAWGNcontributionbutasmallerPNcontribution,andviceversa.Whenthecarrierphase
istime-invariant
,theMSPEcanbemadearbitrarilysmallbyreducingthevalueof.Asmall,however,impliesalargeacquisitiontime.Whenthecarrierphaseistime-varying
,thereexistsanoptimalvalueforthatminimizesthe
steady-stateMSPE.Solvingthisoptimizationproblemyields
MSPE
(25)
whereandMSPEdenotetheoptimalvalueforandthecorrespondingminimumvalueforthelinearizedsteady-stateMSPE,respectively.
B.NumericalResultsandDiscussion
Bymeansofexample,weconsiderabinaryphase-shiftkeying(BPSK)signalconstellation,anobservationintervalof
symbolperiodsandarate1/3turbocode.Theturbo
encoderconsistsoftheparallelconcatenationoftwoidenticalnonrecursivesystematicconvolutionalencoderswithgenerator
polynomials
andinoctalnotation,separatedbyapseudorandominterleaverofsize333bits.Fig.2showstheBERafterone,two,andteniterationsofthecoherentturbodecoder/detector.
InFig.3,theslope
oftheNCAPEDisplottedagainsttheSNR.MonteCarlosimulationtechniqueswereusedtoevaluatethestatisticalexpectationinvolvedintheexpressionof(see(A10)oftheAppendix).Weobservethat,atthenormaloperatingSNRoftheturbocode(say,BER),theslopeoftheNCAPEDcharacteristicisstrictlysmallerthan1,i.e.,thanistheslopeoftheDAPED.ThetradeoffonincaseisillustratedinFig.4showingthenumericalevaluationof(24)for
2.77dB,whichisintheoperatingrangeof
theturbocodefromFig.2,and2.AstheslopeoftheDAPEDislargerthanthatoftheNCAPED,theoptimizedDAPLLyieldsasmalleracquisitiontimeandasmallerMSPEthantheoptimizedNCAPLL.TheoptimalloopfiltergainisaroundwiththeNCAPED,andreducesto
withtheDAPED.TheminimumMSPEforthe
NOELSetal.:PERFORMANCEANALYSISOFML-BASEDFEEDBACKCARRIERPHASESYNCHRONIZERSFORCODEDSIGNALS1133
Fig.2.BERofcoherentturboreceiverforarate1/3turbocodedBPSKsignalinAWGN.
Fig.3.SlopeoftheNCAPEDcharacteristicat=0,inthecaseofBPSK.
NCAPLLisafactorof0.57largerthantheminimumMSPEfortheDAPLL.Thisisconsistentwith(25)andwiththebehaviorofdepictedinFig.3.
InFig.5,wehaveplottedthesimulatedMSPEattheoutputoftheDA,theNCA,andtheiterativeCAPLLasafunctionofthesymbolindex.Wehavetaken2.77dBand
.Thecarrierphaseisassumedtobeeitherconstant
overtheobservationinterval(CCP)ortoperformarandomwalk
with
2(WPN).TheiterationoftheCAPLLisanFig.4.Linearizedsteady-stateMSPEasafunctionoftheloopparameter.
Fig.5.MSPEofafirstorderPLLwith=0:04,trackingaconstantcarrierphase(CCP)orWienerphasenoisewith=2(WPN).
NCArecursion.Inbothcases,wefindthattheMSPEoftheit-erativeCAPLLbecomesessentiallyequaltotheMSPEofthe
DAPLLafteronlytwoiterations(i.e.,foriterations).ThisconfirmsthevalidityoftheassumptionmadeatthebeginningofSectionIV-A.AstheslopeoftheNCAPEDissmallerthanthatoftheDAPED,theacquisitiontimeandthePNcontribu-tiontothetrackingMSPEarelargerforNCAoperationthanfor
DAoperation(CAoperation,
).Conversely,theAWGNcontributiontothetrackingMSPE,isthesameforNCAopera-tionandforDAoperation(CAoperation,).Thisimplies
1134Fig.6.MSPEofafirst-orderDAPLLwith=0:04,trackingaconstantcarrierphaseandusingforward–backwardphaseupdating.
that,whenthecarrierphaseistime-invariant(CCP),thetrackingMSPEcannotbereducedbyperforming,aftertheinitialNCArecursion,iterationsintheCAmode.
V.FORWARD–BACKWARDPHASEUPDATING
Duringtheacquisitionperiodatthebeginningoftheobser-vationinterval(seeFig.5),theMSPEmayassumelargevalues.
Assumingthattheacquisitiontransientisnolongerpresentattheendoftheobservationinterval,accuratephaseestimatesatthebeginningoftheobservationintervalcanbeobtainedbycar-ryingoutanadditionalrecursion,usingasinitialphaseestimatetheestimateobtainedattheendofthefirstrecursionandup-datingthephaseestimatesfromthelastsymboltothefirstac-cordingtothefollowingbackwardrecursion:
backwardrecursion
(26)
TheresultofthisprocedureisshowninFig.6forafirst-order
DAPLLwith
,andfor2.77dBand.ForaDAPLLoranNCAPLL,theedgeeffectthatarisesneartheendoftheobservationintervalcanbeexplainedasfollows.Substituting(15)into(26),weobtain
(27)
with
,andgivenby(18).Takingintoaccountthat
isgiven
by(22)with
,solving(27)yields(28)
IEEETRANSACTIONSONSIGNALPROCESSING,VOL.55,NO.3,MARCH2007
Fig.7.f=2g(0)n(10g(0))
asafunctionofn.
where.Approximatingby0
for
andtakingintoaccountthatthenoisesamplesaremutuallyindependent,itcanbeverifiedthat
MSPE
MSPE
(29)
where
(30)
andMSPEandMSPEaregivenby(24).Theterms
proportionalto
donotoccurin(23)andarearesultofthereusingofthesamples.Thefunction
isplotinFig.7,for
.For,itequalszero.Astheproductofalinearlyincreasingfunctionandanexponentiallydecreasing
function,
firstincreasesandthendecreaseswithincreasing.Forinfinite,convergestozero.ThisexplainstheshapeoftheedgeeffectintheMSPEneartheendoftheobserva-tioninterval(where
issmall).Nearthestartoftheobser-vationinterval(where
islarge),isnegligiblysmalland(29)reducesto(23).Assumingthat
ises-sentiallyzerofor
,theedgeeffectcanbecircum-ventedbytakingasfinalphaseestimatestheestimatesatin-stants
fromtheforwardrecursionandthosewithindexes
fromthebackwardrecursion.
Intheabove,wehaveconsideredonlytwosuccessiverecur-sions,oneintheforwardandoneinthebackwarddirection,buttheforward–backwardphaseupdatingprincipleiseasilyex-tendedtoahighernumberofrecursions.Inordertoreducetheeffectofacquisitiontransients,theiterativeCAPLLismodifiedasfollows.Insteadofperformingonlyforwardrecursions,an
alternationofforward(foriterations
andback-ward(foriterations
)recursionsiscarriedout,witheachrecursionusingasinitialphaseestimatetheestimateobtainedattheendofthepreviousiteration.
Letusreconsidertheturbo-codedBPSKsignalfromSectionIV.Fig.8showstheMSPEperformanceoftheNCAandCAfeedbackphaseestimatorswithforward–backward
phaseupdatingand
,forseveralvaluesofthephasenoisevariance
asafunctionof.ThesimulatedNOELSetal.:PERFORMANCEANALYSISOFML-BASEDFEEDBACKCARRIERPHASESYNCHRONIZERSFORCODEDSIGNALS1135
Fig.8.MSPEofafirstorderML-basedPLLwith=0:04.CAoperationversusNCAoperation,simulationversusanalyticalcomputation.
MSPE(continuouslines)iscomparedwiththelinearizedana-lyticalresultfromSectionIV(dashedlines).Thediscrepancy
(whichisquitesmallfor
largerthanabout4dB)be-tweenthesimulationsandthecomputationsistheresultoftherandomoccurrenceofnonlinearphenomenasuchascycleslipsandhang-ups[16].Intheabsenceofphasenoise,theCAal-gorithmyieldsessentiallythesameMSPEastheconventionalNCAalgorithmsincethelatterisgiven‘moretime’bythefor-ward-backwardrecursiontoletitstransientfadeout.Inthepres-enceofphasenoise,theMSPEoftheCAsynchronizerislowerthanthatoftheconventionalNCAalgorithm.Therelativead-vantageoftheCAsynchronizerovertheNCAsynchronizerin-creaseswiththevalueofthephasenoisevariance.Itspeaksfor
itselfthattheestimationaccuracyincreaseswith
.VI.CONCLUSION
ThiscontributionhasstudiedtheeffectivenessofCAandNCAML-basedfeedbackphasesynchronizersatthelowSNRssupportedbypowerfuliterativelydecodablecodessuchasturbocodesorLDPCcodes.Undernormaloperatingconditions,theMSPEresultingfromtheiterativeCAsynchronizerconvergestotheMSPEresultingfromaDAsynchronizerthatknowsalldatasymbolsinadvance.ThisillustratestheoptimalityoftheCAML-basedfeedbackphasesynchronizer.Byvirtueofaforward-
backwardmultiple-recursionestimator,thelinearizedMSPEoftheNCAfeedbacksynchronizerequalsthatoftheCAfeedbacksynchronizer,whenthecarrierphaseisessentiallyconstantovertheobservationintervalandtheloopfiltergainisthesameforbothsynchronizers.Conversely,thepresenceofWienerphasenoiseresultsinaNCAfeedbacksynchronizerMSPEthatislargerthantheCAfeedbacksynchronizerMSPE.TheNCAsyn-chronizeralsoyieldsalargeracquisitiontimethantheCAsyn-chronizer.However,assumingthattheacquisitiontransientisshorterthantheobservationinterval,theeffectoftheacquisitiontransientonthephaseerrorcanbecircumventedbycarryingoutanalternationofforwardandbackwardphaseupdatingre-cursions,witheachrecursionusingasinitialphaseestimatetheestimateobtainedattheendofthepreviousrecursion.
APPENDIX
WefirstconsiderNCAfeedbackphasesynchronization.
Takingin(3)
and,wefindthattheNCAPEDoutputfrom(8)canberewrittenasfollows:
(A1)
wheretheprobabilitydensityis(withinanirrel-evantfactor)givenby
with
asin(6).
Thedecomposition(13),(14)of(A1)asthesumofthePED
characteristic
andtheloopnoiseyields(A2)
(A3)
Takingthefirstandthesecondderivative(withrespect
tothetruecarrierphase
)ofbothsidesofthenor-malizationconstraint
,andusing,itcanbeverifiedthat
(A4)
and
(A5)
Itfollowsdirectlyfromand(A4)that.Takingintoaccountthat
and(11),thePEDslopeandtheloopnoise
at
aregivenby
(A6)(A7)
1136Becauseofthestatisticalpropertiesof,theloopnoiseat
iswhite5anditspowerspectraldensityisgivenby
(A8)
Takingintoaccount(A5)and(3),weobtain
(A9)
with
(A10)
Itcanbeverifiedthat
from(A10)equalstheratioofthemodifiedCramér–Raobound(MCRB)tothetrueCramér–Raobound(CRB)relatedtotheestimationofanunknownbutdeter-ministiccarrierphasefromthenoisyobservationofuncoded
datasymbols[14].AsCRB
MCRB,andCRBconvergestoMCRBforlargeSNR,itisfoundthat
,and
.TheaboveanalysisremainsvalidforDAoperationpro-videdthatwereplace
with,andwith,whichis(withinanirrelevantfactor)givenby.Inthiscase,weobtain
(A11)
REFERENCES
[1]A.D’Amico,A.D’Andrea,andR.Reggiannini,“Efficient
non-data-aidedcarrierandclockrecoveryforsatelliteDVBatverylowsignal-to-noiseratio,”IEEEJ.Sel.AreasCommun.,vol.19,no.12,pp.2320–2330,Dec.2001.
[2]L.LuandG.Wilson,“Synchronizationofturbocodedmodulationsys-temsatlowSNR,”inProc.Int.Conf.Communications(ICC),Atlanta,GA,1998,pp.428–432.
[3]L.ZhangandA.Burr,“Iterativecarrierphaserecoverysuitedforturbo-codedsystems,”IEEETrans.WirelessCommun.,vol.3,no.6,pp.2267–2276,Nov.2004.
[4]V.LotticiandM.Luise,“Embeddingcarrierphaserecoveryinto
iterativedecodingofturbo-codedlinearmodulations,”IEEETrans.Commun.,vol.52,no.4,pp.661–669,Apr.2004.
[5]N.Noels,V.Lottici,A.Dejonghe,H.Steendam,M.Moeneclaey,M.
Luise,andL.Vandendorpe,“Atheoreticalframeworkforsoftinforma-tionbasedsynchronizationiniterative(turbo)receivers,”EURASIPJ.WirelessCommun.Netw.,vol.2005,no.2,pp.117–129,Apr.2005.[6]W.OhandK.Cheun,“Jointdecodingandcarrierrecoveryalgorithms
forturbocodes,”IEEECommun.Lett.,vol.6,pp.375–377,Sep.2001.[7]C.LanglaisandM.Helard,“Phasecarrierrecoveryforturbocodesover
asatellitelinkwiththehelpoftentativedecisions,”inProc.Int.Symp.TurboCodesRelatedTopics,Brest,France,Sep.2000,pp.439–442.[8]A.AnastasopoulosandK.M.Chugg,“Adaptiveiterativedetectionfor
phasetrackinginturbo-codedsystems,”IEEETrans.Commun.,vol.49,pp.2135–2144,Dec.2001.
[9]G.Colavolpe,A.Barbieri,andG.Caire,“Iterativedecodinginthepres-enceofstrongphasenoise,”IEEEJ.Sel.AreasCommun.[Online].Available:www.eurecom.fr/~caire,submittedforpublication
[10]N.Noels,H.Steendam,andM.Moeneclaey,“Amaximum-likelihood
basedfeedbackcarriersynchronizerforturbo-codedsystems,”inProc.61stIEEEVehicularTechnologyConference(VTC)Spring2005,Stockholm,Sweden,May29–Jun.1,2005,PaperA4-3.
5Inthecaseofuncodedtransmissionthisfollowsdirectlyfromthefactthatr
andrareindependentfork=k,butitcanbeshownanalytically(outsidethescopeofthispaper)thatthispropertyholdsindependentlyofthecodeproperties.
IEEETRANSACTIONSONSIGNALPROCESSING,VOL.55,NO.3,MARCH2007
[11]——,“TheCramer-Raoboundforphaseestimationfromcoded
linearlymodulatedsignals,”IEEECommun.Lett.,vol.7,no.5,pp.207–209,May2003.
[12]C.GeorghiadesandD.Snyder,“Theexpectation-maximizationalgo-rithmforsymbolunsynchronizedsequencedetection,”IEEETrans.Commun.,vol.39,no.1,pp.54–61,Jan.1991.
[13]R.A.Boyles,“OntheconvergenceoftheEMalgorithm,”J.Roy.
Statist.Soc.B,vol.45,no.1,pp.47–50.
[14]H.L.VanTrees,Detection,Estimation,andModulationTheory.New
York:Wiley,1990.
[15]F.Kschinschang,B.Frey,andH.-A.Loeliger,“Factorgraphsandthe
sum-productalgorithm,”IEEETrans.Inf.Theory,vol.47,no.2,pp.498–519,Feb.2001.
[16]H.Meyr,M.Moeneclaey,andS.A.Fechtel,DigitalCommunication
Receivers,Synchronization,ChannelEstimationandSignalPro-cessing.NewYork:Wiley,1998.
[17]L.R.Bahl,J.Cocke,F.Jelinek,andJ.Raviv,“Optimaldecoding
oflinearcodesforminimizingsymbolerrorrate,”IEEETrans.Inf.Theory,vol.IT-20,pp.248–287,Mar.1974.
NeleNoelsreceivedtheDiplomadegreeinelectricalengineeringfromGhentUniversity,Gent,Belgium,in2001.SheiscurrentlyworkingtowardsthePh.D.degreeattheDepartmentofTelecommunicationsandInformationProcessing,GhentUniversity.
Hermainresearchinterestsareincarrierandsymbolsynchronization.Sheistheauthorofseveralpapersininternationaljournalsandconferenceproceedings.
HeidiSteendam(M’00)receivedtheDiplomaandPh.D.degrees,bothinelectricalengineering,fromGhentUniversity,Gent,Belgium,in1995and2000,respectively.
SheisProfessorattheDepartmentofTelecom-municationsandInformationProcessing,GhentUni-versity.Hermainresearchinterestsareinstatisticalcommunicationtheory,carrierandsymbolsynchro-nization,bandwidth-efficientmodulationandcoding,spread-spectrum(multicarrierspread-spectrum),andsatelliteandmobilecommunication.Sheistheau-thorofmorethan50scientificpapersininternationaljournalsandconferenceproceedings.
MarcMoeneclaey(M’93–SM’99–F’02)receivedtheDiplomaandPh.D.degrees,bothinelectricalengineering,fromtheUniversityofGhent,Gent,Belgium,in1978and1983,respectively.
From1978to1999,heheldvariouspositionsfortheBelgianNationalFundforScientificResearch(NFWO),fromResearchAssistanttoResearchDirector,atGhentUniversity.HeispresentlyaPro-fessorintheDepartmentofTelecommunicationsandInformationProcessing(TELIN),GhentUniversity.Hisresearchinterestsincludestatisticalcommu-nicationtheory,carrierandsymbolsynchronization,bandwidth-efficientmodulationandcoding,spread-spectrum,andsatelliteandmobilecommu-nication.Heistheauthorofmorethan200scientificpapersininternationaljournalsandconferenceproceedings.TogetherwithProf.H.Meyr(RWTHAachen)andDr.S.Fechtel(SiemensAG),hehascoauthoredthebookDigitalCommunicationReceivers—Synchronization,ChannelEstimation,andSignalProcessing(NewYork:Wiley,1998).
Dr.MoeneclaeyhasbeenactiveinvariousinternationalconferencesasTechnicalProgramCommitteememberandSessionchairman.From1992to1994,heservedasEditorforSynchronizationfortheIEEETRANSACTIONSONCOMMUNICATIONS.Hewasco-GuestEditorfortheDecember2001IEEEJOURNALOFSELECTEDAREASINCOMMUNICATIONS(JSAC)specialissueonSignalSynchronizationinDigitalTransmissionSystems.From1993to2002,hewasanexecutiveCommitteeMemberoftheIEEECommunicationsandVehicularTechnologySocietyJointChapter,BeneluxSection.
因篇幅问题不能全部显示,请点此查看更多更全内容