您的当前位置:首页2019—2020学年度第二学期期末考试八年级数学试题及答案

2019—2020学年度第二学期期末考试八年级数学试题及答案

来源:小侦探旅游网
2019—2020学年度第二学期期末考试

八年级数学试题

注意事项:

1.本试卷考试时间为100分钟,试卷满分120分.考试形式闭卷. 2.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.

3.答题前,务必将自己的学校、班级、姓名、准考证号填写在答题纸上相应位置. 一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上) 1.下列图形中,既是轴对称图形又是中心对称图形的是

A. B. C. D.

2.下列调查中,最适宜采用普查方式的是

A.对科学通信卫星上某种零部件的调查

C.对一批节能灯管使用寿命的调查

B.对我国初中学生视力状况的调查 D.对“最强大脑”节目收视率的调查

3.与5是同类二次根式的是

A.3 B.10 C.25 D.15 4.下列分式中,最简分式是

2A.

4aa21B.

aa2b2C.

aba2abD.

ab5.同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6),

下列事件中是必然事件的为 A.两枚骰子朝上一面的点数和为6 C.两枚骰子朝上一面的点数和不小于2

B.两枚骰子朝上一面的点数均为偶数 D.两枚骰子朝上一面的点数均为奇数

6.已知反比例函数y=

3,下列结论中,不正确的是 ...xB.y随x的增大而减小 D.若x>1,则0<y<3

A.图像必经过点(1,3) C.图像在第一、三象限内

7.小峰不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能在商店配到一块与原来相

同的玻璃,他带了两块碎玻璃,其编号应该是 A.①,②

B.①,④

C.③,④

D.②,③

八年级数学试题 第1页 共6页

8.如图,在矩形ABCD中,AB=3,BC=4,若点P是AD边上的一个动点,则点P到矩形

的对角线AC、BD的距离之和为 A.2.4

B.2.5

P

C.3

D

y N B D.3.6 P A A

④ ① ③

B

第7题图

C 第8题图

O 第16题图 M x

二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接

写在答题纸相应位置上).

9. 使二次根式x1有意义的x的取值范围是 ▲ . 10.当x= ▲ 时,分式x1的值为0. x22的图像上,则m的值为 ▲ . x11.若点A(1,m)在反比例函数y12.比较大小:32 ▲ 23.(填“”、“”或“=”)

13.一个不透明的盒子里装有黑、白两种球共40个(除颜色外其它均相同),小明将盒子里

的球搅匀后,从中随机摸出一个记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:

摸球的次数n 100 摸到白球的次数m 65 摸到白球的频率200 124 0.62 300 178 0.593 500 302 0.604 800 481 0.601 1000 599 0.599 3000 1803 0.601 m n0.65 请估计摸到白球的概率为 ▲ (精确到0.01).

14.平行四边形ABCD的对角线AC、BD相交于点O,当AC、BD满足 ▲ 时,平行

四边形ABCD为菱形.

15.实数a、b在数轴上对应点的位置如右图所示,

化简(ab)2a的结果是 ▲ .

a 0 b 第15题图

16.如图,过点P(5,3)作PM⊥x轴于点M、PN⊥y轴于点N,反比例函数y

k

(x0)的x

图像交PM于点A、交PN于点B.若四边形OAPB的面积为10,则k= ▲ .

八年级数学试题 第2页 共6页

三、解答题(本大题共有10小题,共72分.请在答题纸指定区域内作答,解答时应写出文

字说明、推理过程或演算步骤) 17.(本题满分6分)

计算:(1)8 18.(本题满分6分)

解方程:

22 (2)(32)(32)

11x3 x22x 19.(本题满分6分)

20.(本题满分6分)

关注“安全”是一个永恒不变的话题.某中学对部分学生就安全知识的了解程度,采取了随机抽样调查的方式,将收集到的信息分为4种类别:A.非常了解;B.基本了解;C.了解很少;D.不了解.请你根据统计图中所提供的信息解答下列问题.

条形统计图

先化简再求值:(x13x1),其中x=3. x1x2

扇形统计图

人数 40 30 20 10 0 A B C 30 15 5 D 类别

A D C B 50% (1)接受问卷调查的学生共有 ▲ 人,扇形统计图中“了解很少”部分所对应扇

形的圆心角为 ▲ °;

(2)请补全条形统计图;

(3)若该学校共有学生3000人,估计该学校学生中对安全知识达到 “非常了解”和“基

八年级数学试题 第3页 共6页

本了解”程度的总人数.

21.(本题满分6分)

如图,在□ABCD中,∠BAD的角平分线分别交BC以及DC的延长线于点E、 F. (1)求证:BC=DF;

A D (2)若∠F=65°,求∠D的度数.

B C E

F

22.(本题满分6分)

已知m是3的整数部分,n是3的小数部分. (1)m= ▲ ,n= ▲ ; (2)求代数式m2n2 的值.

23.(本题满分8分)

彭师傅检修一条长为900米的煤气管道,计划用若干小时完成,在实际检修过程中,每小时检修的管道长是原计划的1.2倍,结果提前3小时完成任务.彭师傅原计划每小时检修管道多少米?

24.(本题满分8分)

k如图,点A(m,4),B(n,1)在反比例函数y(x0)的图像上,过点A、B分别作x

x轴的垂线,垂足为点C和点D,且CD=3. (1)求m、n的值,并写出反比例函数的表达式;

(2)若直线AB的函数表达式为yaxb(a0),请结合图像直接写出不等式axb

的解集.

y kxA B O C D x

八年级数学试题 第4页 共6页

25.(本题满分10分)

kk问题呈现:我们知道反比例函数y(k0)的图像是双曲线,那么函数yn(k、m、

xxm

kn为常数且k≠0)的图像还是双曲线吗?它与反比例函数y(k0)的图像有怎样的关

x系呢?让我们一起开启探索之旅……

4的图像. x1探索思考:我们可以借鉴以前研究函数的方法,首先探索函数y(1)填写下表,并画出函数y①列表:

x y … … 4的图像. x15 3 2 0 1 3 … …

②描点并连线.

y

6

5

4

3

2

1

–6 –5 –4 –3 –2 –1 O 1 2 3 4 5 6 x –1

–2

–3

–4

–5

–6

(2)观察图像,写出该函数图像的两条不同类型的特征: ① ▲ ; ② ▲ . 理解运用:函数y

44的图像是由函数y的图像向 ▲ 平移 ▲ 个单位,x1x其对称中心的坐标为 ▲ .

42的图像大致位置,并根据图x1灵活应用:根据上述画函数图像的经验,想一想函数y像指出,当x满足 ▲ 时,y≥3.

八年级数学试题 第5页 共6页

26.(本题满分10分)

在数学兴趣小组活动中,小悦进行数学探究活动.将边长为1的正方形ABCD与边长为2的正方形AEFG按图①位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.

连接DG、BE,易得DG=BE且DGBE(不需要说明理由). G F G F

B C B

C

A

E D A E

图② 图① D

(1)如图②,小悦将正方形ABCD绕点A逆时针旋转,旋转角为(30 º <<180 º). (Ⅰ)连接DG、BE,求证:DG=BE且DGBE.

(Ⅱ)在旋转过程中,如图③连接BG、GE、ED、DB,求出四边形BGED面积的最 大值.

G F B

C

A E

D 图③ (2)如图④,分别取BG、GE、ED、DB的中点M、N、P、Q,连接MN、NP、PQ、 QM,则四边形MNPQ的形状为 ▲ ,四边形MNPQ面积的最大值是 ▲ . G F

M N B

A

E Q C P D

图④

八年级数学试题 第6页 共6页

八年级数学答题纸

题号 得分 1-8 9-16 17 18 19 20 21 22 23 24 25 26 总分 一、选择题(本大题共8小题,每小题3分,共24分)

题号 答案 1 2 3 4 5 6 7 8 二、填空题(本大题共8小题,每小题3分,共24分)

9. 10. 11. 12. 13. 14. 15. 16. 三、解答题(本大题共有10小题,共72分) 17.(本题满分6分) (1)

18.(本题满分6分)

19.(本题满分6分)

20.(本题满分6分)

(1)________;________.

条形统计图

人数 八年级数学试题 第7页 共6页 40 30 20 10 0 A B C 30 15 5 D 类别

(2)

(3)

21.(本题满分6分) (1) (2)

22.(本题满分6分)

(1)________;________.(2)

23.(本题满分8分)

A D

B

E

C F

八年级数学试题 第8页 共6页

24.(本题满分8分) (1)

(2)

25.(本题满分10分)

探索思考:(1) ①

x y ② (2)

①:________________________________________________________________; ②:________________________________________________________________.

八年级数学试题 第9页 共6页

y 6 5 4 3 2 1 –6 –5 –4 –3 –2 –1 O –1 –2 –3 –4 –5 –6 1 2 3 4 5 6 x y A B O C D x

… … 5 3 2 0 1 3 … … 理解运用:________________;________________;________________.

灵活应用:__________________________________.

26.(本题满分10分) (1) (Ⅰ) (Ⅱ)

(2)________________;________________.

八年级数学试题 第10页G F

B

C

A

E

D

图②

G F B C

A E D 图③

6页

共八年级数学试题参考答案及评分细则

一、选择题(每小题3分,共24分.)

1.D 5.C 9.x≥1 13.0.60

2.A 6.B 10.1 14.AC⊥BD

3.C 7.D 11.2 15.b

4.B 8.A 12.> 16.5

二、填空题(每小题3分,共24分.)

三、解答题(本大题共有10小题,共72分) 17.解:(1)原式=222 =2. ················································································ 3分 (2)原式=92

=7. ··················································································· 3分 18.解:两边同乘以(x2)

1(1x)3(x2)

································································································ 4分 x2 ·

检验:当x2时,(x2)=0 ································································· 5分 ∴x2是原分式方程的增根,原分式方程无解. ······································· 6分 19.解:

x24x1原式 x1x2 x2 ························································································ 4分 把x3代入(x2) 原式32

5. ·························································································· 6分 20.解:(1)60;90; ··············································································· 2分 人数 条形统计图 (2)如图所示,就是我们所要

补全的条件统计图; ······················· 4分 (3)

40 30 20 10 0 A B C 10 30 15 5 D 类别

301030002000(人) 60 答:该学校学生中对安全知识达到 “非常了解”和“基本了解”程度的 21.解:

(1)∵四边形ABCD为平行四边形

总人数为2000人. ········································································ 6分

八年级数学试题 第11页 共6页

∴BA∥CD,AD=BC ···································································································· 1分 ∴∠BAF=∠F ∵AE平分∠BAD ∴∠BAF=∠DAF

∴∠DAF=∠F ··············································································································· 2分 ∴AD=DF

∴BC=DF ······················································································································ 3分 (2)∵AD=DF

∴∠F=∠DAF=65° ············································································ 5分 ∴∠D=50°. ····················································································· 6分 22.解:

(1)1;31 ························································································ 2分 (2)原式(mn)(mn) ········································································ 3分 3(131)233. ··························································· 6分

23.解:设彭师傅原计划每小时检修管道x米,根据题意可得:

900900···················································································· 3分 3 ·

x1.2x解得:x50 ······················································································ 4分 经检验:x50是原分式方程的解. ························································ 5分 答:彭师傅原计划每小时检修管道50米. ················································ 6分 24.解:

(1)根据题意得:

4mn ·······································2分 nm3A y m1解得: ·································· 4分

n4B 把(1,4)代入y∴k4

k

x

O C

x ∴反比例函数的表达式为y4. ·························································· 6分 x(2)0x1或x4. ········································································ 8分

八年级数学试题 第12页 共6页

25.解: (1)

探索思考: ①列表:···························································································· 1分

x y

… … 5 1 3 2 2 4 0 4 1 2 3 1 … … ② ······································································································ 3分 y 6 5 4 3 2 1 –6 –5 –4 –3 –2 –1 O –1 –2 –3 –4 –5 –6 1 2 3 4 5 6 x (2)

①图像是中心对称图形; ········································································· 4分 ②当x1时,y随着x的增大减小. ························································ 5分 ③图像是轴对称图形 ④图像经过点(0,4) ⑤与x轴没有交点…… (注:仅写两条即可) 理解运用:

左;1;(1,0). ···················································································· 8分 灵活应用:

························································································ 10分 1x3. ·26.解:

(1) (Ⅰ)证明:

∵正方形ABCD和正方形AEFG

∴AD=AB,AE=AG,∠BAD=∠GAE=90° ··············································· 1分 ∴∠DAG=∠BAE

八年级数学试题 第13页 共6页

在△DAG和△BAE中, DABA∠DAG∠BAE GAEA∴△DAG≌△BAE ·················································································· 2分 ∴DG=BE ···························································································· 3分 ∴∠DGA=∠BEA

∵∠DGA+∠GHE=∠BEA+∠GAE ∴∠GHE=∠GAE=90°

∴DG⊥BE ···························································································· 4分 (Ⅱ)连接BE、DG相交点H ∵BE⊥DG

∴S四边形BGED=S△BGE+S△BDE

11=GHBEDHBE 221=DGBE 21=BE2 ······························································································ 6分 2当=90°时

BE最大值=BA+AE=21

3221∴S四边形BGED的最大值为(21)2即为. ········································· 8分

22(2)正方形;

322. ······································································· 10分 4G

F

B C

A

E

图②

D A E 图③ G H F B

C

H D

八年级数学试题 第14页 共6页

因篇幅问题不能全部显示,请点此查看更多更全内容