1.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x、y轴上,连接AC,将纸片OABC沿AC折叠,使点B落在点D的位置.若点B的坐标为(4,8),则点D的坐标是____. 2.如图,在平面直角坐标系中,直线y= -2x+2与 x轴、y轴分别相交于点A、B,四边形ABCD是正方形,曲线在第一象限经过点D.则________.
3.如图,在四边形ABCD中,AD∥BC,AB=DC=AD=6, ∠ABC=∠C=70°,点E、F分别在线段AD、DC上,且 ∠BEF=110°, 若AE=3,求DF的长.
4.点E为线段BC上一点,若 ∠B=∠AEF =∠C=90°, 连接AF,AB=7,CF=4,BC=11,当△ABE与△EFC相似时,求BE的长.
AyBCFDOAxBE图4C
5.如图设M为线段AB中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,EM交BD于G.
(1)写出图中三对相似三角形,并对其中一对作出证明; (2)连接FG,设α=45°,AB=4
,AF=3,求FG长.
6.如图,已知y1=k1x+k1(k1≠0)与反比例函数 (k2≠0)的图象交于点A、C,其中A点坐标(1,1).
(1)求反比例函数的解析式;
(2)根据图象写出在第一象限内,当取何值时,y1<y2?
(3)若一次函数y1=k1x+k1与x轴交于B点,连接OA,求△AOB的面积: (4)在(3)的条件下,在坐标轴上是否存在点P,使△AOP是等腰三角形?若存在,请写出P点的坐标;若不存在,请说明理由.
7.已知:在矩形AOBC中,OB=3,OA=2.分别以OB、OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.若点F是边BC上的一个动点(不与B、C重合),过F点的反比例函数(k>0)的图象与边交于点E.
(1)直接写出线段AE、BF的长(用含k的代数式表示); 设△AOE与△FOB的面积分别为S1,S2,求证:S1=S2; (3)记△OEF的面积为S.
①求出S与k的函数关系式并写出自变量k的取值范围;
②以OF为直径作⊙N,若点E恰好在⊙N上,请求出此时△OEF的面积S. (4)当点F在BC上移动时,△OEF与△ECF的面积差记为S,求当k为何值时,S有最大值,最大值是多少?
(5)请探索:是否存在这样的点E,使得将△CEF沿EF对折后,C点恰好落在OB上?若存在,求出点E的坐标;若不存在,请说明理由.
8.如图1,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q. (1)试探究EP与FQ之间的数量关系,并证明你的结论;
(2)如图2,若连接EF交GA的延长线于H,由(1)中的结论你能判断EH与FH的大小关系吗?并说明理由.
(3)在(2)的条件下,若BC=AG=24,请直接写出S△AEF=______.
(4)如图3,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H. 若AB= k AE,AC= k AF,试探究HE与HF之间的数量关系,并说明理由.
EAMNBGCHF9.△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B (1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.
(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点
A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.
(3)在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的1/4 时,求线段EF的长.
10.等腰△ABC,AB=AC=8,∠BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P,三角板绕P点旋转. (1)如图a,当三角板的两边分别交AB、AC于点AEFE、F时.求证:△BPE~△CFP;
(2)操作:将三角板绕点P旋转到图b情形时,
BP三角板的两边分别交BA的延长线、边AC于点E、
F.
① 探究1:△BPE与△CFP还相似吗?
② 探究2:连结EF,△BPE与△PFE是否相似?请说明理由; ③ 设EF=m,△EPF的面积为S,试用m的代数式表示S.
11.如图,在△ABC中,AB=AC=5cm,BC=8,点P为BC边上一动点(不与点B、C重合),过点P作射线PM交AC于点M,使∠APM=∠B;
B (1)求证:△ABP∽△PCM;
(2)设BP=x,CM=y.求 y与x的函数解析式,并写出函数的定义域. (3)当△APM为等腰三角形时, 求PB的长.
图3
AEFCBPCA
M P
C
因篇幅问题不能全部显示,请点此查看更多更全内容