您的当前位置:首页有理数的乘法数学教案

有理数的乘法数学教案

2021-12-16 来源:小侦探旅游网

  教学目标

  1、知识目标:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数。

  2、能力目标:能应用正负数表示生活中具有相反意义的量。

  3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系。教学重难点

  重点:理解有理数的意义。

  难点:能用正负数表示生活中具有相反意义的量。

  教学过程

  一、创设情境、提出问题

  某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础分均为0分。两个队答题情况见书上第23页。

  二、分析探索、问题解决

  分组讨论扣的'分怎样表示?

  用前面学的数能表示吗?

  数怎么不够用了?

  引出课题。

  讲授正数、负数、有理数的定义。

  用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数。启发学生再从生活中例举出用负数表示具有相反意义的数。

  三、巩固练习

  1、用正数或负数表示下列各题中的数量:

  (1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;

  (2)球赛时,如果胜2局记作+2,那么-2表示______;

  (3)若-4万表示亏损4万元,那么盈余3万元记作______;

  (4)+150米表示高出海平面150米,低于海平面200米应记作______.

  分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量.

  2、下面说法中正确的是。

  a.“向东5米”与“向西10米”不是相反意义的量;

  b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;

  c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;

  d.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米.

  三、小结回顾、纳入体系

  学生交流回顾、讨论总结,教师补充如下:

  概念:正数、负数、有理数。

  分类:有理数的分类:两种分法。

  应用:有理数可以用来表示具有相反意义的量。

因篇幅问题不能全部显示,请点此查看更多更全内容