您的当前位置:首页质数和合数教学设计

质数和合数教学设计

来源:小侦探旅游网

  教学目标:知识与技能:

  1、掌握质数和合数的意义。

  2、熟记20以内质数,能较快地、准确地辩识一个常见数是质数还是合数。

  3、通过探究质数和合数的意义,培养学生的探究意识和能力。

  数学思考:

  1、透过实际箱装饮料罐的排列方式,感知生活中有数学。

  2、能对现实生活中箱装饮料罐的数字信息作出合理解释。

  情感与态度:

  1、由简单、实际的生活例子开始,减少学习时遇到太过抽象,无法理解的情况,以增加学习信心。

  2、在形式多样的练习中,激发学生的学习兴趣。

  教具学具:

  cai、投影仪、学习单2张,学号数字卡。

  教学过程:课前谈话。

  如果让你给来听课的老师分类,你想怎样分?(按性别分成男和女两组,按年龄分年青和年长两组…)也就是说按不同的标准分有不同的分法。

  一、生活实例引入

  1、观察生活:

  (1)师:日常生活中,一箱饮料通常都是排在长方体的纸箱中。

  请你猜猜看:通常一箱饮料的总数量会是些什么数?(生猜:偶数、奇数……)

  师:真是这样的吗?

  (2)老师这里拍摄了一些箱装饮料的照片,大家一起来看一看:每箱饮料共有多少瓶?是怎样排列的?用算式表示。

  教师出示4张不同数量装箱的照片:  板书:   9=33

  9瓶啤酒、12瓶可乐、                    12=34

  15瓶牛奶、24瓶雪碧                     15=35

  24=46

  学生观察并说一说:9瓶啤酒排成3行3列,9=33……

  (师板书在黑板右侧)

  2、实际数量的多种排列方法,分析可行性:

  这些数量装在一个长方体纸箱中,还可以怎样排?(学生说出尽可能多的排列方法,老师补充前面板书。)

  板书:9=33=19

  12=34=26=112

  15=35=115

  24=46=38=212=124

  提问:你觉得哪种排列方式,实际生活中采用的可能性最小?(请一学生在黑板上勾一勾。)

  为什么?(不便携带……)

  3、比较质疑,引入新课:

  现在老师这儿有13瓶饮料,请你将它们排在一个长方体纸箱中,要求每排数量相等,可以有哪些排法?17呢?19呢?

  板书:13=113              学生思考,同桌说一说

  17=117             (师板书在黑板左侧)

  19=119              

  你还能举出几个这样的数吗?

  据学生回答:20以内的质数。(这样的数还有很多)

  二、探究原因:

  (一)、探究质数意义:

  1、想一想:为什么右边的数量可以排成多行多列,而左边的数量不能排成多行多列呢?

  (评:这个问题抓住了实质,它是本节课的核心和关键,非常具有思考价值,学生的思维被充分地调动起来。)

  四人小组讨论(相机提示:跟这些数的约数有关。仔细观察左边这些数的约数,你发现了什么?)

  汇报:(鼓励学生用自己的语言描述)

  整理揭示:象这样只有1和它本身两个约数的数叫“质数”。

  (cai辅助逐步演示。)

  2:1、 2

  3:1、 3

  5:1、 5

  7:1、 7

  11:1、11

  13:1、13

  17:1、17

  19:1、19

  ……

  2、再举几个质数,并说明理由。

  (评:适时巩固应用,加深理解概念。)

  (二)、探究合数

  1、用质数判断合数:右边这些数也是质数吗?(不是)为什么?

  除了1和它本身还有别的约数。

  揭示:象这样除了1和它本身,还有别的约数的数,叫“合数”。

  (cai辅助逐步演示)

  4:1、4、2

  6:1、6、2、3

  8:1、8、2、4

  9:1、9、3

  10:1、10、2、5

  12:1、12、2、6

  14:1、14、2、7

  15:1、15、3、5  

  16:1、16、2、8、4

  18:1、18、2、9、3、6

  20:1、20、2、10、4、5

  ……

  2、请你再举几个合数,并说明理由。

  3、比较巩固意义:你觉得判断一个数是质数还是合数的关键是什么?(约数的个数。)

  (三)、谜底揭晓:日常生活中一箱饮料的总数量通常是些什么数?(板书:合数)很少采用什么数?(板书:质数)

  (四)、巩固练习,并引出“1”

  1、判断下列各数(是质数,一、二组举手;是合数,三、四组举手)。

  2、17、50、22、37、35、29、87、1

  提问50、87的判断方法(联系旧知:能被2、5、3整除的数的特征)

  2、当最后判断“1”时,都没举手,提问:为什么?

  学生充分发表意见。

  揭示:“1”只有一个约数,它既不是质数,也不是合数。(cai演示。)

  (五)、总结并揭题:这节课我们学到了哪些新知识?

  三、发展练习(cai辅助演示。)

  1、学习单1:小组合作完成后,是的画“√”。1、学习单1:是的画“√”。

  1

  2

  3

  4

  5

  6

  7

  8

  9

  10

  11

  12

  13

  14

  15

  16

  17

  18

  19

  20

  奇数

  偶数

  质数

  合数

  填一填:

  (1)最小的奇数是   (   )

  (2)最小的质数是   (   ),

  (3)最小的合数是   (   )

  (4)既是偶数又是质数的只有  (   ),

  (5)既是奇数又是合数的有    (   )、(   )……

  判断下列说法是否正确。

  (1)在自然数中,除了质数以外都是合数。    (   )

  (2)除2以外,所有的偶数都是合数。        (   )

  (3)所有的奇数都是质数。                  (   )

  (4)两个质数相加,和一定是合数。          (   )

  (5)9既是奇数又是合数。                   (   )

  2、猜一猜老师的电话号码。

  第一位:10以内既是偶数又是合数的最大数

  第二位:既是质数又是奇数的最小数

  第三位:最小的质数

  第四位:10以内最大的质数

  第五位:最小的合数

  第六位:既不是质数又不是合数的数

  第七位:10以内既是奇数又是合数的最大数

  第八位:最小的偶数

  四、动脑筋离开教室。

  请最特殊的数“1”离开教室;

  请既是奇数又是合数的离开教室;

  请质数离开教室;

  请既是偶数又是合数的离开教室。

  1

  2

  3

  4

  5

  6

  7

  8

  9

  10

  11

  12

  13

  14

  15

  16

  17

  18

  19

  20

  21

  22

  23

  24

  25

  26

  27

  28

  29

  30

  31

  32

  33

  34

  35

  36

  37

  38

  39

  40

  41

  42

  43

  44

  45

  46

  47

  48

  49

  50

  51

  52

  53

  54

  55

  56

  57

  58

  59

  60

  61

  62

  63

  64

  65

  66

  67

  68

  69

  70

  (课件按要求逐步出示数字,学生在自我判断后对照课件上的数字选择离开教室)

因篇幅问题不能全部显示,请点此查看更多更全内容