您的当前位置:首页《有理数的减法》教学设计

《有理数的减法》教学设计

2020-10-19 来源:小侦探旅游网

  一、知识与技能

  理解有理数加减法可以互相转化,能把有理数加减混合运算统一为加法运算,灵活应用运算律进行计算。

  二、过程与方法

  经历综合运用有理数加减法解决实际问题的过程,培养学生分析问题解决问题的能力。

  三、情感态度与价值观

  体会数学与现实生活的联系,提高学生学习数学的兴趣。

  教学重点、难点与关键

  1.重点:有理数加减法统一为加法运算,掌握有理数加减混合运算。

  2.难点:省略括号和加号的加法算式的运算方法。

  3.关键:理解加减混合运算可以统一成加法,以及正确理解省略加号的'有理数加法形式。

  教具准备

  投影仪。

  四、教学过程

  一、复习提问,引入新课

  1.叙述有理数的加法、减法法则。

  2.计算。

  (1)(-8)+(-6); (2)(-8)-(-6); (3)8-(-6);

  (4)(-8)-6; (5)5-14.

  五、新授

  我们已学习了有理数加、减法的运算,今天我们来研究怎样进行有理数的加减混合运算。

  例6:计算:(-20)+(+3)-(-5)-(+7)。

  分析:这个式子中有加法,也有减法,可以按照运算顺序,从左到右逐一加以计算。也可以用有理数的减法法则,则它改写为(-20)+(+3)+(+5)+(-7)使问题转化为几个有理数的加法。

  解:(-20)+(+3)-(-5)-(+7)

  =(-20)+(+3)+(+5)+(-7)

  =[(-20)+(-7)]+[(+3)+(+5)]

  =-27+(+8)

  =-19

  把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便。

  归纳:加减混合运算可以统一为加法运算。

  用式子表示为a+b-c=a+b+(-c)。

  式子(-20)+(+3)+(+5)+(-7)是-20,+3,+5,-7这四个数的和,为了书写简单,可以省略式子中的括号和加号,把它写为:-20+3+5-7.

  这个式子读作负20、正3、正5、负7的和或读作负20加3加5减7。

  例6的运算过程也可简写为:

  (-20)+(+3)-(-5)-(+7)

  =(-20)+(+3)+(+5)+(-7) (加减法统一为加法)

  =-20+3+5-7 (省略式子中的括号和括号前面的加号)

  =-20-7+3+5 (加法交换律交换时,要连同符号一起交换)

  =-19 (异号两数相减)

  六、巩固练习

  1.课本第24页练习。

  (1)题是已写成省略加号的代数和,可运用加法交换律、结合律。

  原式=1+3-4-0.5=0-0.5=-0.5

  (2)题运用加减混合运算律,同号结合。

  原式=-2.4-4.6+3.5+3.5=-7+7=0

  (3)题先把加减混合运算统一为加法运算。

  原式=(-7)+(-5)+(-4)+(+10)

  =-7-5-4+10 (省略括号和加号)

  =-16+10

  =-6

  七、课堂小结

  有理数加减混合运算通常统一成加法运算,运算时常用交换律和结合律使计算简便,一般情况采用:(1)凡相加是整数的,可以先加;(2)分母相同或易于通分的分数相结合;(3)有互为相反数可以互相抵消的,先相加;(4)正、负数分别相加。总之要认真观察,灵活运用运算律。

  八、作业布置

  1.课本第25页第26页习题1.3第5、6、13题。

  九、板书设计:

  1.3.2 有理数的减法(2)

  第四课时

  1、把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便。

  归纳:加减混合运算可以统一为加法运算。

  用式子表示为a+b-c=a+b+(-c)。

  2、随堂练习。

  3、小结。

  4、课后作业。

  十、课后反思

因篇幅问题不能全部显示,请点此查看更多更全内容