您的当前位置:首页等离子体物理基本参数手册

等离子体物理基本参数手册

来源:小侦探旅游网
2004REVISED

NRLPLASMAFORMULARY

J.D.HubaBeamPhysicsBranchPlasmaPhysicsDivisionNavalResearchLaboratoryWashington,DC20375

Supportedby

TheOfficeofNavalResearch

1

FOREWARD

TheNRLPlasmaFormularyoriginatedovertwentyfiveyearsagoandhasbeenrevisedseveraltimesduringthisperiod.Theguidingspiritandper-sonprimarilyresponsibleforitsexistenceisDr.DavidBook.IamindebtedtoDaveforprovidingmewiththeTEXfilesfortheFormularyandhiscontinuedsuggestionsforimprovement.TheFormularyhasbeensetinTEXbyDaveBook,ToddBrun,andRobertScott.Finally,Ithankreadersforcommunicat-ingtypographicalerrorstome.

2

CONTENTS

NumericalandAlgebraicVectorIdentities

.....................

457

.........................

DifferentialOperatorsinCurvilinearCoordinates...........

DimensionsandUnits.............InternationalSystem(SI)Nomenclature.....MetricPrefixes................PhysicalConstants(SI)............PhysicalConstants(cgs)...........FormulaConversion.............Maxwell’sEquations

.............ElectricityandMagnetism...........ElectromagneticFrequency/WavelengthBands..ACCircuits.................DimensionlessNumbersofFluidMechanics

...Shocks

...................FundamentalPlasmaParameters........PlasmaDispersionFunction..........CollisionsandTransport...........IonosphericParameters............SolarPhysicsParameters...........ThermonuclearFusion............RelativisticElectronBeams

..........BeamInstabilities..............ApproximateMagnitudesinSomeTypicalPlasmasLasers

...................AtomicPhysicsandRadiation.........AtomicSpectroscopy.............Complex(Dusty)Plasmas

...........References..................3

........................................................................................................................................................................................11..14..14..15..17

..19..20

..21..22..23

..24

..27

..29..31..32..41..42..43

..45

..47

..49

..51

..53

..59

..62

..66

..........................NUMERICALANDALGEBRAIC

GainindecibelsofP2relativetoP1

G=10log10(P2/P1).

Towithintwopercent

(2π)

1/2

≈2.5;π≈10;e≈20;2

2310

≈10.

3

Euler-Mascheroniconstant1γ=0.57722GammaFunctionΓ(x+1)=xΓ(x):

Γ(1/6)Γ(1/5)Γ(1/4)Γ(1/3)Γ(2/5)Γ(1/2)

======

5.56634.59083.62562.67892.2182√1.7725=

Γ(3/5)Γ(2/3)Γ(3/4)Γ(4/5)Γ(5/6)

=====1.48921.35411.22541.16421.1288

2!

x2+

α(α−1)(α−2)

x+kz

󰀈x+kz󰀊

k

y

x+y+nz

󰀈x+y+nz󰀊

n

.

Newberger’ssummationformula3[goodforµnonintegral,Re(α+β)>−1]:

∞󰀏

(−1)nJα−γn(z)Jβ+γn(z)

sinµπ

Jα+γµ(z)Jβ−γµ(z).

n=−∞

4

VECTORIDENTITIES4

Notation:f,g,arescalars;A,B,etc.,arevectors;Tisatensor;Iistheunitdyad.

(1)A·B×C=A×B·C=B·C×A=B×C·A=C·A×B=C×A·B(2)A×(B×C)=(C×B)×A=(A·C)B−(A·B)C(3)A×(B×C)+B×(C×A)+C×(A×B)=0(4)(A×B)·(C×D)=(A·C)(B·D)−(A·D)(B·C)(5)(A×B)×(C×D)=(A×B·D)C−(A×B·C)D(6)∇(fg)=∇(gf)=f∇g+g∇f(7)∇·(fA)=f∇·A+A·∇f(8)∇×(fA)=f∇×A+∇f×A(9)∇·(A×B)=B·∇×A−A·∇×B

(10)∇×(A×B)=A(∇·B)−B(∇·A)+(B·∇)A−(A·∇)B(11)A×(∇×B)=(∇B)·A−(A·∇)B

(12)∇(A·B)=A×(∇×B)+B×(∇×A)+(A·∇)B+(B·∇)A(13)∇2f=∇·∇f

(14)∇2A=∇(∇·A)−∇×∇×A(15)∇×∇f=0(16)∇·∇×A=0

Ife1,e2,e3areorthonormalunitvectors,asecond-ordertensorTcanbewritteninthedyadicform(17)T=

Incartesiancoordinatesthedivergenceofatensorisavectorwithcomponents(18)(∇·T)i=

󰀍

i,j

Tijeiej

[ThisdefinitionisrequiredforconsistencywithEq.(29)].Ingeneral(19)∇·(AB)=(∇·A)B+(A·∇)B(20)∇·(fT)=∇f·T+f∇·T

󰀍

j

(∂Tji/∂xj)

5

Letr=ix+jy+kzbetheradiusvectorofmagnituder,fromtheorigintothepointx,y,z.Then(21)∇·r=3(22)∇×r=0(23)∇r=r/r(24)∇(1/r)=−r/r3(25)∇·(r/r3)=4πδ(r)(26)∇r=I

IfVisavolumeenclosedbyasurfaceSanddS=ndS,wherenistheunitnormaloutwardfromV,(27)

(28)

(29)

(30)

󰀑

󰀑

󰀑

󰀑

dV∇f=

V

󰀑

dSf

S

dV∇·A=

V

dV∇·T=

V

󰀑

󰀑

dS·A

S

dS·T

S

dV∇×A=

V

(31)

(32)

󰀑

󰀑

󰀑

dS×A

S

dV(f∇2g−g∇2f)=

V

󰀑

dS·(f∇g−g∇f)

S

dV(A·∇×∇×B−B·∇×∇×A)

V

=

󰀑

dS·(B×∇×A−A×∇×B)

S

IfSisanopensurfaceboundedbythecontourC,ofwhichthelineelementisdl,(33)

󰀑

dS×∇f=

S

󰀋

dlf

C

6

(34)

(35)

󰀑

󰀑

dS·∇×A=

S

󰀋

dl·A

C

(dS×∇)×A=

S

(36)

󰀑

󰀋

dl×A

C

dS·(∇f×∇g)=

S

󰀋

fdg=−

C

󰀋

gdf

C

DIFFERENTIALOPERATORSINCURVILINEARCOORDINATES5

CylindricalCoordinatesDivergence

∇·A=

1∂r

(rAr)+

1∂φ

+∂Az

∂r

;

(∇f)φ=

1∂φ

;(∇f)z=

∂f

∂Azr∂Ar

∂r

1∂r

1∂φ∂z

(∇×A)φ=

(∇×A)z=(rAφ)−

Laplacian

∇f=

2

1∂r

󰀔

r

∂f

r2

∂2f

∂z2

7

Laplacianofavector

(∇A)r=∇Ar−

2

2

2

∂φ∂Arr2

Ar

r2

(∇A)z=∇Az

22

Componentsof(A·∇)B

(A·∇B)r=Ar

∂Br

rAφ

∂φ∂Bzr

∂z

∂Br

∂z∂Bφ

r−AφBφ

∂r∂Bz

++Az

(A·∇B)z=Ar

Divergenceofatensor

(∇·T)r=

1∂r

(rTrr)+

1∂φ

+∂Tzr

r

∂Tzφ

r

(∇·T)φ=

1∂r

(rTrφ)+

1

∂φ

+

(∇·T)z=

1∂r

(rTrz)+

1

∂φ

+

∂Tzz

SphericalCoordinatesDivergence

∇·A=Gradient

(∇f)r=

∂f

r∂f

rsinθ

∂f

1∂r

(rAr)+

2

1

∂θ

(sinθAθ)+

1

∂φ

rsinθ

∂Ar

rsinθ∂r

rr∂Ar∂

rsinθ

∂Aθ

∂r2

∂r

󰀖

+

1

∂θ

󰀔

sinθ

∂f

r2sin2θ

∂2f

r2

2

∂θ

2cotθAθ

r2sinθ

2cosθ

∂φ

∂Aφ

∂Arr2

r2sinθr2sin2θ

(∇2A)φ=∇2Aφ−

∂Ar

r2sin2θ

∂Aθ

Componentsof(A·∇)B

(A·∇B)r=Ar

∂Br

r

∂Bθ

rAθ

∂θ∂Bθ

rsinθAφ

∂φ

∂Br

rsinθ

∂Bθ

rAφBr

r

∂Br

r

cotθAφBφ

(A·∇B)θ=Ar

∂r

Divergenceofatensor

(∇·T)r=

1∂r

+++

(rTrr)+

2

1

∂θ

(sinθTθr)1

∂φ

Tθθ+Tφφ

+

∂r2

rsinθ

∂Tφθ

rsinθ

∂r2

rsinθ

∂Tφφ

rsinθ

r

r

cotθTφφ

+

cotθTφθ

DIMENSIONSANDUNITS

TogetthevalueofaquantityinGaussianunits,multiplythevalueex-pressedinSIunitsbytheconversionfactor.Multiplesof3intheconversionfactorsresultfromapproximatingthespeedoflightc=2.9979×1010cm/sec≈3×1010cm/sec.

PhysicalQuantityCapacitance

q

ChargedensityConductanceConductivityCurrentCurrentdensityDensityDisplacementElectricfield

E,

qtq2tq2qqmqml

Conversion

SIt2q2

l

m1/2l3/2m1/2l1m1/2l3/2m1/2mm1/2m1/2

coulombcoulomb/m3siemenssiemens/mampereampere/m2kg/m3coulomb/m2volt/m

31

t2qml2m

ml2m

t

joulejoule/m3

×10

−4

Units

9×1011

Units

statcoulombstatcoulomb/cm3cm/secsec−1statamperestatampere/cm2g/cm3

statcoulomb/cm2

statvoltergerg/cm3

motanceEnergyEnergydensity

11

PhysicalQuantityForceFrequencyImpedance

L

LengthMagneticintensityMagneticfluxMagneticinductionMagneticmomentMagnetizationMagneto-Mmfm,Mp,P

l

Conversion

SIml1ml2

ml1t

Unitsnewtonhertzohm

91

×10−11

sec2/cmcentimeter(cm)oerstedmaxwellgaussoersted–cm3oerstedUnitsdynehertz

q2l

meter(m)

m1/2m1/2l3/2m1/2m1/2l5/2m1/2m1/2l1/2

ampere–turn/mweberteslaampere–m2ampere–turn/mampere–

1010310510−1

henry/m

×10

7

qml2ml2qqq

m

tl2t

tl2t

µ

q24π

PhysicalQuantityPermittivity

PV,φ

PowerPowerdensityPressureReluctanceResistance

η,ρκ,ktAvη,µζW

Conversion

SIt2q2

1l1/2t

tml2mm1t

wattwatt/m3pascalampere–turn/weberohmohm–m

t3ttqtlttt2

tlttt2

t

99×10×10

−11

Units

36π×1093×1051

Units

l2t2qml2mmq2ml2

statvolterg/secerg/cm3–secdyne/cm2cm−1

tq2t3

−9

1051106102101107

INTERNATIONALSYSTEM(SI)NOMENCLATURE6PhysicalQuantity*length*mass*time*current*temperature*amountofsubstance*luminousintensity†planeangle†solidanglefrequencyenergyforcepressurepower

SymbolforUnit

mkgsAKmolcdradHzJNPaWsr

PhysicalQuantityelectricpotentialelectricresistanceelectric

conductanceelectric

capacitancemagneticfluxmagneticinductancemagneticintensity

SymbolforUnit

VΩSFWbHTlmlxBqGy

luminousfluxilluminanceactivity(ofaradioactivesource)

electricchargeC*SIbaseunit†Supplementaryunit

absorbeddose

(ofionizingradiation)

METRICPREFIXES

Multiple10−110−210−310−610−910−1210−1510−18

Symboldcmµnpfa

Multiple

10102103106109101210151018

SymboldahkMGTPE

14

PHYSICALCONSTANTS(SI)7

SymbolkemempGh

SpeedoflightinvacuumPermittivityof

µ0

freespace

Proton/electronmass

e/me

ratio

Rydbergconstant

8󰁎02ch3

a0=󰁎0h2/πme2πa02

re=e2/4π󰁎0mc2(8π/3)re2h/mec

electron

Fine-structureconstant

α−1

c1=2πhc2c2=hc/k

constantStefan-Boltzmann

5.6705×10−83.8616×10−137.2974×10−31.8362×1031.0546×10−342.9979×1088.8542×10−12

UnitsJK−1Ckgkg

m3s−2kg−1Js

Hm−1

Ckg−1m−1mm2mm2m

Wm2mK

with1eV

Frequencyassociated

with1eV

Energyassociatedwith

1m−1

Energyassociatedwith

1Kelvin

Temperatureassociated

(no.densityatSTP)AtomicmassunitStandardtemperatureAtmosphericpressurePressureof1mmHg

acceleration

SymbolUnits

λ0=hc/e

m

2.4180×1014

k0=e/hc

m−1

1.6022×10−19

hc

J

13.606

k/e

eV

1.1604×104

NA

mol−1F=NAeCmol−1R=NAkJK−1mol−1n0

m−3

1.6605×10−27

273.151.0133×1051.3332×102

V0=RT0/p0m3MairkgJ

g

ms−2

16

PHYSICALCONSTANTS(cgs)7

Symbolke

ElectronmassProtonmass

GravitationalconstantPlanckconstant

h¯=h/2πcmp/me

ratio

Electroncharge/mass

R∞=

Bohrradius

AtomiccrosssectionClassicalelectronradiusThomsoncrosssectionComptonwavelengthof

h¯/mecα=e2/h¯c

137.04

FirstradiationconstantSecondradiation

σ

constant

Wavelengthassociated

1.2398×10−43.7418×10−5

1.4388

2π2me4

5.2728×10171.0974×1055.2918×10−98.7974×10−172.8179×10−136.6525×10−252.4263×10−10

cm

9.1094×10−281.6726×10−246.6726×10−86.6261×10−27

Unitserg/deg(K)statcoulomb

erg-seccm/sec

erg/cm2-

Symbolν0

with1eV

Wavenumberassociated

8.0655×103

erg

1eV

Energyassociatedwith

1.9864×10−16

eV

1Rydberg

Energyassociatedwith

8.6174×10−5

Hz

Units

deg(K)

with1eVAvogadronumberFaradayconstantGasconstantLoschmidt’snumber

muT0

p0=n0kT0

(1torr)

MolarvolumeatSTPMolarweightofaircalorie(cal)Gravitational

2.2414×104

28.9714.1868×107

980.676.0221×10232.8925×10148.3145×1072.6868×1019

gdeg(K)dyne/cm2dyne/cm2

FORMULACONVERSION8

Hereα=102cmm−1,β=107ergJ−1,󰁎0=8.8542×10−12Fm−1,µ0=4π×10−7Hm−1,c=(󰁎0µ0)−1/2=2.9979×108ms−1,andh¯=1.0546×10−34Js.ToderiveadimensionallycorrectSIformulafromoneexpressedin

¯,wherek¯is¯=kQGaussianunits,substituteforeachquantityaccordingtoQ

thecoefficientinthesecondcolumnofthetablecorrespondingtoQ(overbars

¯2/mdenotevariablesexpressedinGaussianunits).Thus,theformulaa¯0=h¯¯e¯2

fortheBohrradiusbecomesαa0=(¯hβ)2/[(mβ/α2)(e2αβ/4π󰁎0)],ora0=󰁎0h2/πme2.TogofromSItonaturalunitsinwhichh¯=c=1(distinguished

ˆ−1Qˆisthecoefficientcorrespondingtoˆ,wherekbyacircumflex),useQ=k

Qinthethirdcolumn.Thusaˆ0=4π󰁎0h¯2/[(mˆh¯/c)(ˆe2󰁎0h¯c)]=4π/mˆeˆ2.(IntransformingfromSIunits,donotsubstitutefor󰁎0,µ0,orc.)

PhysicalQuantityCapacitanceCharge

ChargedensityCurrent

CurrentdensityElectricfield

ElectricpotentialElectricconductivityEnergy

EnergydensityForce

FrequencyInductanceLength

MagneticinductionMagneticintensityMass

MomentumPowerPressureResistanceTimeVelocity

NaturalUnitstoSI󰁎0−1(󰁎0h¯c)−1/2(󰁎0h¯c)−1/2(µ0/h¯c)1/2(µ0/h¯c)1/2(󰁎0/h¯c)1/2(󰁎0/h¯c)1/2󰁎0−1(¯hc)−1(¯hc)−1(¯hc)−1c−1µ0−11(µ0h¯c)−1/2(µ0/h¯c)1/2c/h¯h¯−1(¯hc2)−1(¯hc)−1

(󰁎0/µ0)1/2cc−1

19

MAXWELL’SEQUATIONS

NameorDescriptionFaraday’slaw

∇×H=∇·B=0

chargeqConstitutiverelations

∇·D=ρ

∂t∂D

Gaussian

∂Bc

∇×H=

1∂t

+4π

q(E+v×B)

c

D=󰁎EB=µH

v×B

󰀖

Inaplasma,µ≈µ0=4π×10−7Hm−1(Gaussianunits:µ≈1).Thepermittivitysatisfies󰁎≈󰁎0=8.8542×10−12Fm−1(Gaussian:󰁎≈1)providedthatallchargeisregardedasfree.Usingthedriftapproximationv⊥=E×B/B2tocalculatepolarizationchargedensitygivesrisetoadielec-tricconstantK≡󰁎/󰁎0=1+36π×109ρ/B2(SI)=1+4πρc2/B2(Gaussian),whereρisthemassdensity.

TheelectromagneticenergyinvolumeVisgivenby

1

W=

Poynting’stheoremis

∂W

󰀑

dV(H·B+E·D)

V

(Gaussian).

ELECTRICITYANDMAGNETISM

Inthefollowing,󰁎=dielectricpermittivity,µ=permeabilityofconduc-tor,µ󰀉=permeabilityofsurroundingmedium,σ=conductivity,f=ω/2π=radiationfrequency,κm=µ/µ0andκe=󰁎/󰁎0.Wheresubscriptsareused,‘1’denotesaconductingmediumand‘2’apropagating(losslessdielectric)medium.AllunitsareSIunlessotherwisespecified.PermittivityoffreespacePermeabilityoffreespaceResistanceoffreespace

CapacityofparallelplatesofareaA,separatedbydistancedCapacityofconcentriccylindersoflengthl,radiia,bCapacityofconcentricspheresofradiia,b

Self-inductanceofwireoflengthl,carryinguniformcurrentMutualinductanceofparallelwiresoflengthl,radiusa,separatedbydistancedInductanceofcircularloopofradiusb,madeofwireofradiusa,carryinguniformcurrentRelaxationtimeinalossymediumSkindepthinalossymediumWaveimpedanceinalossymediumTransmissioncoefficientatconductingsurface9(goodonlyforT󰀘1)

FieldatdistancerfromstraightwirecarryingcurrentI(amperes)FieldatdistancezalongaxisfromcircularloopofradiusacarryingcurrentI

󰁎0=8.8542×10−12Fm−1µ0=4π×10−7Hm−1

=1.2566×10−6Hm−1R0=(µ0/󰁎0)1/2=376.73ΩC=󰁎A/dC=2π󰁎l/ln(b/a)C=4π󰁎ab/(b−a)L=µl

L=(µ󰀉l/4π)[1+4ln(d/a)]

L=b

󰀐

µ[ln(8b/a)−2]+µ/4

󰀉

󰀒

τδ

=󰁎/σ

=(2/ωµσ)1/2=(πfµσ)−1/2

Z=[µ/(󰁎+iσ/ω)]1/2

T=4.22×10−4(fκm1κe2/σ)1/2

Bθ=µI/2πrtesla

=0.2I/rgauss(rincm)Bz=µa2I/[2(a2+z2)3/2]

21

ELECTROMAGNETICFREQUENCY/

WAVELENGTHBANDS10

WavelengthRange

Designation

Lower

Lower10Mm

30Hz300Hz3kHz30kHz300kHz3MHz30MHz300MHz3GHz2.63.955.37.058.210.012.418.026.530GHz300GHz3THz430THz750THz30PHz3EHz

1Mm100km10km1km100m10m1m10cm1cm7.65.13.73.02.42.01.671.10.751mm100µm700nm400nm10nm100pm

ACCIRCUITS

ForaresistanceR,inductanceL,andcapacitanceCinserieswith√avoltagesourceV=V0exp(iωt)(herei=

dt2

+R

dq

C

=V.

Solutionsareq(t)=qs+qt,I(t)=Is+It,wherethesteadystateisIs=iωqs=V/ZintermsoftheimpedanceZ=R+i(ωL−1/ωC)andIt=dqt/dt.Forinitialconditionsq(0)≡q0=q¯0+qs,I(0)≡I0,thetransientscanbeofthreetypes,dependingon∆=R2−4L/C:(a)Overdamped,∆>0

qt=It=

I0+γ+q¯0γ+(I0+γ−q¯0)

γ+−γ−

exp(−γ+t),

exp(−γ−t),

γ+−γ−

whereγ±=(R±∆1/2)/2L;(b)Criticallydamped,∆=0

qt=[¯q0+(I0+γRq¯0)t]exp(−γRt),It=[I0−(I0+γRq¯0)γRt]exp(−γRt),

whereγR=R/2L;(c)Underdamped,∆<0

qt=

󰀕

γRq¯0+I0

ω1

sin(ω1t)exp(−γRt),

󰀁

Hereω1=ω0(1−R2C/4L)1/2,whereω0=(LC)−1/2istheresonant

frequency.Atω=ω0,Z=R.ThequalityofthecircuitisQ=ω0L/R.InstabilityresultswhenL,R,Carenotallofthesamesign.

23

DIMENSIONLESSNUMBERSOFFLUIDMECHANICS12Name(s)Alfv´en,

Bd

Boussinesq

BrCpCa

Cauchy,sekharClausius

Ch

LV3ρ/k∆T

CCr

Dean

CD

coefficient]Eckert

Ek

Euler

Fr

V/NL

Gay–Lussac

GrCH

1/β∆T

volumeduringheating

Buoyancyforce/viscousforceGyrofrequency/

D3/2V/ν(2r)1/2

󰀉

2

DefinitionVA/V

inertialforce)1/2Gravitationalforce/

V/(2gR)1/2

gravitationalforce)1/2Viscousheat/conductedheatViscousforce/surfacetensionTheoreticalCarnotcycle

ρV2/Γ=M2

compressibilityforceMagneticforce/dissipativeconductionrate

Magneticforce/inertialforceEffectofdiffusion/effectofcurvature/longitudinalflowDragforce/inertialforce

ρV

V2/cp∆T(Ro/Re)1/2∆p/ρV2

thermalenergy

(Viscousforce/Coriolisforce)1/2

dynamicpressure

†(Inertialforce/gravitationalor

coefficient]

*(†)Alsodefinedastheinverse(square)ofthequantityshown.

24

Name(s)Hartmann

DefinitionBL/(µη)1/2=

Kn

Lewis

LoLu

MachMachMm

Magnetic

NtN

P´ecletPoisseuillePrandtl

RaReRi

RossbySchmidt

St

StefanStokes

SrTa

BoltzmannTh,Bo

Weber

κ/D

AlRmV/CS

µ0LV/η

LV/κD2∆p/µLVν/κ

V/2ΩLsinΛν/D

σLT3/kν/L2f

R

1/2

(∆R)

3/2

ρLV2/Σ

25

dissipativeforce)1/2Hydrodynamictime/

diffusion

MagnitudeofrelativisticeffectsJ×Bforce/resistivemagneticeffects

(Inertialforce/magneticforce)1/2velocity

Imposedforce/inertialforceTotalheattransfer/thermal

heatdiffusion

Buoyancyforce/diffusionforceInertialforce/viscousforceBuoyancyeffects/

moleculardiffusion

Thermalconductionloss/

vibrationfrequency

Vibrationspeed/flowvelocity

Centrifugalforce/viscousforceviscousforce)1/2

Convectiveheattransport/

Nomenclature:BCs,ccp

D=2RFfgH,Lk=ρcpκN=(g/H)1/2RrrLTV

VA=B/(µ0ρ)1/2α

MagneticinductionSpeedsofsound,light

Specificheatatconstantpressure(unitsm2s−2K−1)PipediameterImposedforce

Vibrationfrequency

Gravitationalacceleration

Vertical,horizontallengthscales

Thermalconductivity(unitskgm−1s−2)Brunt–V¨ais¨al¨afrequencyRadiusofpipeorchannel

RadiusofcurvatureofpipeorchannelLarmorradiusTemperature

CharacteristicflowvelocityAlfv´enspeed

Newton’s-lawheatcoefficient,k

∂T

SHOCKS

AtashockfrontpropagatinginamagnetizedfluidatanangleθwithrespecttothemagneticinductionB,thejumpconditionsare13,14

¯≡q;(1)ρU=ρ¯U

¯V¯−B¯󰀊B¯⊥/µ;(3)ρUV−B󰀊B⊥/µ=ρ¯U¯󰀊;(4)B󰀊=B

1

2(U

2¯2+p¯2/2µ;(2)ρU2+p+B⊥/2µ=ρ¯U¯+B⊥

¯B¯⊥−V¯B¯󰀊;(5)UB⊥−VB󰀊=U

¯2+V¯2)+w¯B¯2−V¯B¯󰀊B¯⊥)/µρ¯.¯+(U¯U⊥

(6)

HereUandVarecomponentsofthefluidvelocitynormalandtangentialto

thefrontintheshockframe;ρ=1/υisthemassdensity;pisthepressure;B⊥=Bsinθ,B󰀊=Bcosθ;µisthemagneticpermeability(µ=4πincgsunits);andthespecificenthalpyisw=e+pυ,wherethespecificinternalenergyesatisfiesde=Tds−pdυintermsofthetemperatureTandthespecificentropys.Quantitiesintheregionbehind(downstreamfrom)thefrontaredistinguishedbyabar.IfB=0,then15

¯=[(¯(7)U−Up−p)(υ−υ¯)]1/2;(8)(¯p−p)(υ−υ¯)−1=q2;(9)w¯−w=

1

p+2(¯

p)(υ−υ¯).

Inwhatfollowsweassumethatthefluidisaperfectgaswithadiabaticindex

γ=1+2/n,wherenisthenumberofdegreesoffreedom.Thenp=ρRT/m,whereRistheuniversalgasconstantandmisthemolarweight;thesoundspeedisgivenbyCs2=(∂p/∂ρ)s=γpυ;andw=γe=γpυ/(γ−1).ForageneralobliqueshockinaperfectgasthequantityX=r−1(U/VA)2satisfies14

(11)(X−β/α)(X−cosθ)=Xsinθr=ρ/ρ¯,α=

1

2

2

2

󰀐

[1+(r−1)/2α]X−cosθ,where

2

󰀒

¯=V;(15)V

(16)p¯=p+(1−r−1)ρU2+(1−r2)B2/2µ.

Ifθ=0,therearetwopossibilities:switch-onshocks,whichrequireβ<1and

forwhich

(17)U2=rVA2;¯=VA2/U;(18)U

¯2=2B2(r−1)(α−β);(19)B⊥󰀊¯=U¯B¯⊥/B󰀊;(20)V

(21)p¯=p+ρU2(1−α+β)(1−r−1),andacoustic(hydrodynamic)shocks,forwhich(22)U2=(r/α)Cs2;¯=U/r;(23)U

¯=B¯⊥=0;(24)V

(25)p¯=p+ρU2(1−r−1).

Foracousticshocksthespecificvolumeandpressurearerelatedby(26)υ¯/υ=[(γ+1)p+(γ−1)¯p]/[(γ−1)p+(γ+1)¯p].IntermsoftheupstreamMachnumberM=U/Cs,¯=(γ+1)M2/[(γ−1)M2+2];(27)ρ/ρ¯=υ/υ¯=U/U¯/T=[(γ−1)M2+2](2γM2−γ+1)/(γ+1)2M2;(29)T

(28)p/p¯=(2γM2−γ+1)/(γ+1);

Theentropychangeacrosstheshockis

¯2=[(γ−1)M2+2]/[2γM2−γ+1].(30)M

(31)∆s≡s¯−s=cυln[(¯p/p)(ρ/ρ¯)γ],

wherecυ=R/(γ−1)misthespecificheatatconstantvolume;hereRisthe

gasconstant.Intheweak-shocklimit(M→1),(32)∆s→cυ

2γ(γ−1)

3(γ+1)m

(M−1)3.

Theradiusattimetofastrongsphericalblastwaveresultingfromtheexplo-sivereleaseofenergyEinamediumwithuniformdensityρis(33)RS=C0(Et2/ρ)1/5,

whereC0isaconstantdependingonγ.Forγ=7/5,C0=1.033.

28

FUNDAMENTALPLASMAPARAMETERS

AllquantitiesareinGaussiancgsunitsexcepttemperature(T,Te,Ti)expressedineVandionmass(mi)expressedinunitsoftheprotonmass,µ=mi/mp;Zischargestate;kisBoltzmann’sconstant;Kiswavenumber;γistheadiabaticindex;lnΛistheCoulomblogarithm.Frequencies

electrongyrofrequencyiongyrofrequency

electronplasmafrequency

ionplasmafrequency

electrontrappingrateiontrappingrateelectroncollisionrateioncollisionrateLengths

electrondeBroglielengthclassicalminimumdistanceapproachofelectrongyroradiusiongyroradius

electroninertiallengthioninertiallengthDebyelength

fce=ωce/2π=2.80×106BHzωce=eB/mec=1.76×107Brad/secfci=ωci/2π=1.52×103Zµ−1BHzωci=ZeB/mic=9.58×103Zµ−1Brad/secfpe=ωpe/2π=8.98×103ne1/2Hzωpe=(4πnee2/me)1/2

=5.64×104ne1/2rad/sec

fpi=ωpi/2π

=2.10×102Zµ−1/2ni1/2Hzωpi=(4πniZ2e2/mi)1/2

=1.32×103Zµ−1/2ni1/2rad/sec

νTe=(eKE/me)1/2

=7.26×108K1/2E1/2sec−1

νTi=(ZeKE/mi)1/2

=1.69×107Z1/2K1/2E1/2µ−1/2sec−1νe=2.91×10−6nelnΛTe−3/2sec−1

νi=4.80×10−8Z4µ−1/2nilnΛTi−3/2sec−1

¯=h¯/(mekTe)1/2=2.76×10−8Te−1/2cme2/kT=1.44×10−7T−1cmre=vTe/ωce=2.38Te1/2B−1cmri=vTi/ωci

=1.02×102µ1/2Z−1Ti1/2B−1cmc/ωpe=5.31×105ne−1/2cmc/ωpi=2.28×107(µ/ni)1/2cm

λD=(kT/4πne2)1/2=7.43×102T1/2n−1/2cm29

λVelocities

electronthermalvelocityionthermalvelocityionsoundvelocityAlfv´envelocity

Dimensionless

(electron/protonmassratio)1/2

numberofparticlesinDebyesphereAlfv´envelocity/speedoflightelectronplasma/gyrofrequencyratio

ionplasma/gyrofrequencyratiothermal/magneticenergyratiomagnetic/ionrestenergyratioMiscellaneous

BohmdiffusioncoefficienttransverseSpitzerresistivity

vTe=(kTe/me)1/2

=4.19×107Te1/2cm/secvTi=(kTi/mi)1/2

=9.79×105µ−1/2Ti1/2cm/secCs=(γZkTe/mi)1/2

=9.79×105(γZTe/µ)1/2cm/secvA=B/(4πnimi)1/2

=2.18×1011µ−1/2ni−1/2Bcm/sec(me/mp)1/2=2.33×10−2=1/42.9(4π/3)nλD3=1.72×109T3/2n−1/2vA/c=7.28µ−1/2ni−1/2Bωpe/ωce=3.21×10−3ne1/2B−1ωpi/ωci=0.137µ1/2ni1/2B−1

β=8πnkT/B2=4.03×10−11nTB−2B2/8πnimic2=26.5µ−1ni−1B2DB=(ckT/16eB)

=6.25×106TB−1cm2/secη⊥=1.15×10−14ZlnΛT−3/2sec

=1.03×10−2ZlnΛT−3/2Ωcm

Theanomalouscollisionrateduetolow-frequencyion-soundturbulenceis

󰀓isthetotalenergyofwaveswithω/KMagneticpressureisgivenby

whereB0=10kG=1T.

Detonationenergyof1kilotonofhighexplosiveis

WkT=10

12

󰀓/kT=5.64×10neν*≈ωpeW

4

1/2

󰀓/kTsecW

−1

,

Pmag=B2/8π=3.98×106(B/B0)2dynes/cm2=3.93(B/B0)2atm,

cal=4.2×10

19

erg.

30

PLASMADISPERSIONFUNCTION

Definition16(firstformvalidonlyforImζ>0):

Z(ζ)=π

−1/2

󰀑

+∞

dtexp−t

−∞

󰀈

2

󰀊

=−2(1+ζZ),Z(0)=iπ

1/2

;

d2Z

+2Z=0.

Realargument(y=0):

Z(x)=exp−x

Imaginaryargument(x=0):

󰀈

2

󰀊

󰀂

1/2

−2

󰀑

x

dtexpt

0

󰀈2󰀊

󰀄

.

Z(iy)=iπ

Powerseries(smallargument):

Z(ζ)=iπ

1/2

1/2

expy

exp−ζ

Asymptoticseries,|ζ|󰀙1(Ref.17):

Z(ζ)=iπwhere

1/2

󰀈

2

σexp−ζ

󰀈

󰀊

−2ζ1−2ζ/3+4ζ/15−8ζ/105+···.−ζ

−1

2

󰀊

󰀈

󰀈2󰀊

2

[1−erf(y)].

46

σ=

󰀉0

y>|x|−11|y|<|x|−12y<−|x|−1

󰀈

󰀊

1+1/2ζ+3/4ζ+15/8ζ+···,

246

󰀊

Symmetryproperties(theasteriskdenotescomplexconjugation):

Z(ζ*)=−[Z(−ζ)]*;

Z(ζ*)=[Z(ζ)]*+2iπ1/2exp[−(ζ*)2]

(y>0).

Two-poleapproximations18(goodforζinupperhalfplaneexceptwheny<π1/2x2exp(−x2),x󰀙1):

Z(ζ)≈Z(ζ)≈

󰀉

0.50+0.81i

a*+ζ

0.50+0.96i

(b*+ζ)2

,a=0.51−0.81i;,b=0.48−0.91i.

31

COLLISIONSANDTRANSPORT

TemperaturesareineV;thecorrespondingvalueofBoltzmann’sconstantisk=1.60×10−12erg/eV;massesµ,µ󰀉areinunitsoftheprotonmass;eα=Zαeisthechargeofspeciesα.Allotherunitsarecgsexceptwherenoted.

RelaxationRates

Ratesareassociatedwithfourrelaxationprocessesarisingfromthein-teractionoftestparticles(labeledα)streamingwithvelocityvαthroughabackgroundoffieldparticles(labeledβ):

slowingdown

dvα

(vα−v¯α)⊥=ν⊥vα

2

α|β

2

paralleldiffusion

dtd

dt

vα=−ν󰀱

2α|β

vα,

2

wherevα=|vα|andtheaveragesareperformedoveranensembleoftestparticlesandaMaxwellianfieldparticledistribution.Theexactformulasmaybewritten19

α|βνs=(1+mα/mβ)ψ(xα|β)ν0α|βν⊥α|βν󰀊α|βν󰀱

α|β

=2(1−1/2x=ψ(x

=2(mα/mβ)ψ(x

󰀌

where

ν0

α|β

󰀌

󰀌

;

󰀉

α|β

α|β

α|β

)/x

α|β

󰀎

)ψ(xν0

α|β

)+ψ(x

)ν0

α|β

;

󰀉

α|β

α|β

)−ψ(x

)ν0

󰀎

󰀎

α|β

;

α|β

,

=4πeα2eβ2λαβnβ/mα2vα3;

xα|β=mβvα2/2kTβ;

ψ(x)=

󰀑

x

dtt1/2e−t;ψ󰀉(x)=

0

haveunitscm3sec−1.Testparticleenergy󰁎andfieldparticletemperatureTarebothineV;µ=mi/mpwherempistheprotonmass;Zisionchargestate;inelectron–electronandion–ionencounters,fieldparticlequantitiesaredistinguishedbyaprime.Thetwoexpressionsgivenbelowforeachrateholdforveryslow(xα|β󰀘1)andveryfast(xα|β󰀙1)testparticles,respectively.

Slow

Electron–electron

e|eνs/neλee≈5.8×10−6T−3/2e|e

≈5.8×10−6T−1/2󰁎−1ν⊥/neλeeElectron–ionν󰀊/neλee

e|e

≈2.9×10−6T−1/2󰁎−1

−→7.7×10−6󰁎−3/2

−→7.7×10−6󰁎−3/2

−→3.9×10−6T󰁎−5/2

e|i

νs/niZ2λei≈0.23µ3/2T−3/2−→3.9×10−6󰁎−3/2e|i

→7.7×10−6󰁎−3/2ν⊥/niZ2λei≈2.5×10−4µ1/2T−1/2󰁎−1−e|i

Ion–electron

ν󰀊/niZ2λei≈1.2×10−4µ1/2T−1/2󰁎−1−→2.1×10−9µ−1T󰁎−5/2

i|e

νs/neZ2λie≈1.6×10−9µ−1T−3/2−→1.7×10−4µ1/2󰁎−3/2i|e2−9−1−1/2−1−7−1/2−3/2

󰁎−→1.8×10µ󰁎ν⊥/neZλie≈3.2×10µTi|e

Ion–ion

ν󰀊/neZ2λie≈1.6×10−9µ−1T−1/2󰁎−1−→1.7×10−4µ1/2T󰁎−5/2

i|i󰀉

νs

µ

󰀔

1+

µ󰀉

+

1

󰁎3/2

i|i󰀉ν⊥

µ

ni

󰀉Z2Z󰀉2λ

ii󰀉

≈6.8×10

−8

µ

󰀉1/2

µ

−1

T

−1/2−1

󰁎

Inthesamelimits,theenergytransferratefollowsfromtheidentity

ν󰀱=2νs−ν⊥−ν󰀊,

exceptforthecaseoffastelectronsorfastionsscatteredbyions,wheretheleadingtermscancel.Thentheappropriateformsare

e|iν󰀱−→4.2×10−9niZ2λei

−→9.0×10

−8

µ

1/2

µ

󰀉−1

T󰁎

−5/2

󰀌

󰁎

−3/2

µ

−1

−8.9×10(µ/T)

4

1/2−1

󰁎

exp(−1836µ󰁎/T)sec−1

33

󰀎

and

i|i󰀉ν󰀱

−→1.8×10

α|β

Ingeneral,theenergytransferrateν󰀱ispositivefor󰁎>󰁎α*andnega-tivefor󰁎<󰁎α*,wherex*=(mβ/mα)󰁎α*/Tβisthesolutionofψ󰀉(x*)=(mα|mβ)ψ(x*).Theratio󰁎α*/Tβisgivenforanumberofspecificα,βinthefollowingtable:

󰀌

−7

󰁎

−3/2

ni󰀉ZZλii󰀉

1/2

󰀉

2

󰀉2

µ

/µ−1.1(µ/T)

󰀉1/2−1

󰁎exp(−µ󰁎/T)sec

󰀉

󰀎

−1

.

i|e

e|e,i|ie|pe|D

e|T,e|He3e|He4

WhenbothspeciesarenearMaxwellian,withTi<∼Te,therearejusttwocharacteristiccollisionrates.ForZ=1,

νe=2.9×10−6nλTe−3/2sec−1;νi=4.8×10

−8

nλTi

−3/2

µ

−1/2

sec

−1

.

TemperatureIsotropization

Isotropizationisdescribedby

dT⊥

dT󰀊

2

πeαeβnαλαβ

A1/2

22

󰀇

.

IfA<0,tan−1(A1/2)/A1/2isreplacedbytanh−1(−A)1/2/(−A)1/2.ForT⊥≈T󰀊≡T,

eνT=8.2×10−7nλT−3/2sec−1;

νT=1.9×10

i

−8

nλZµ

2

−1/2

T

−3/2

sec

−1

.

34

ThermalEquilibration

Ifthecomponentsofaplasmahavedifferenttemperatures,butnorela-tivedrift,equilibrationisdescribedby

dTα

(mαTβ+mβTα)3/2

ForelectronsandionswithTe≈Ti≡T,thisimplies

ν¯󰀱/ni=ν¯󰀱/ne=3.2×10

e|i

i|e

−9

sec

−1

.

Zλ/µT

23/2

cmsec

3

−1

.

CoulombLogarithm

Fortestparticlesofmassmαandchargeeα=Zαescatteringofffieldparticlesofmassmβandchargeeβ=Zβe,theCoulomblogarithmisdefinedasλ=lnΛ≡ln(rmax/rmin).Hererministhelargerofeαeβ/mαβu¯2andh¯/2mαβu¯,averagedoverbothparticlevelocitydistributions,wheremαβ=󰀍mαmβ/(mα+mβ)andu=vα−vβ;rmax=(4πnγeγ2/kTγ)−1/2,where

thesummationextendsoverallspeciesγforwhichu¯2¯ωcβ−1rmax,thetheorybreaksdown.Typicallyλ≈10–20.Correctionstothetrans-portcoefficientsareO(λ−1);hencethetheoryisgoodonlyto∼10%andfailswhenλ∼1.

Thefollowingcasesareofparticularinterest:(a)Thermalelectron–electroncollisions

λee=23−ln(ne1/2Te−3/2),

=24−ln(ne

(b)Electron–ioncollisionsλei=λie=23−lnne

=24−lnne=30−lnni

1/2

Te

−1

),

Te<∼10eV;Te>∼10eV.

󰀈

󰀈

󰀈

1/21/2

−3/2

ZTe−1Te

1/2

Ti

−3/2

󰀊

,

󰀊

,

Time/mi

2

−1

35

󰀊

Time/mi<10ZeVTe2

(c)Mixedion–ioncollisions

λii󰀉=λi󰀉i=23−ln

󰀆

ZZ󰀉(µ+µ󰀉)

Ti

+

ni󰀉Z󰀉2

µµ󰀉βD2

󰀔

ne

Dt

∂fα

∂t

󰀖

,

coll

whereFisanexternalforcefield.Thegeneralformofthecollisionintegralis󰀍(∂fα/∂t)coll=−∇v·Jα|β,with

β

J

α|β

=2πλαβ

eα2eβ2

1

fα(v)∇v󰀉fβ(v󰀉)−

mα2

󰀃

f(v)∇vH(v)−

α

1

󰀖󰀑36

fβ(v󰀉)u−1d3v󰀉.

Ifspeciesαisaweakbeam(numberandenergydensitysmallcomparedwithbackground)streamingthroughaMaxwellianplasma,then

J

α|β

=−mα

να|β

vv·∇vf

α

mdα

vαnα

α

2

󰀊

−1

Dt=νee(Fe−fe)+νei(F

¯e−fe);Dfi

2πkTα

󰀖3/2

exp

mα(v−vα)2

3/2

2πkT

¯α󰀖exp

󰀃󰀃󰀕

󰀕

mα(v−v¯α)2

dt

+nα∇·vα=0;

c

vα×B󰀁

+Rα;

37

3

dt

+pα∇·vα=−∇·qα−Pα:∇vα+Qα.

themomentumandenergygainedbytheαthspeciesthroughcollisionswiththeβth;Pαisthestresstensor;andqαistheheatflow.

Thetransportcoefficientsinasimpletwo-componentplasma(electronsandsinglychargedions)aretabulatedbelow.Here󰀖and⊥refertothedi-rectionofthemagneticfieldB=bB;u=ve−viistherelativestreamingvelocity;ne=ni≡n;j=−neuisthecurrent;ωce=1.76×107Bsec−1andωci=(me/mi)ωcearetheelectronandiongyrofrequencies,respectively;andthebasiccollisionaltimesaretakentobe

3√4

Heredα/dt≡∂/∂t+vα·∇;󰀍pα=nαkTα,wherekisBoltzmann’sconstant;󰀍Rα=RαβandQα=Qαβ,whereRαβandQαβarerespectively

β

β

τe=

sec,

whereλistheCoulomblogarithm,and

3√4

1/2

τi=

µsec.

Inthelimitoflargefields(ωcατα󰀙1,α=i,e)thetransportprocessesmaybesummarizedasfollows:21

momentumtransferfrictionalforceelectrical

conductivitiesthermalforce

Ru=ne(j󰀊/σ󰀊+j⊥/σ⊥);Rei=−Rie≡R=Ru+RT;

σ󰀊=1.96σ⊥;σ⊥=ne2τe/me;RT=−0.71n∇󰀊(kTe)−

nkmi

3n

conductivitieselectronheatfluxfrictionalheatflux

mi

qe=qu+qT;

equ

e

e

;

iκ⊥

=

2nkTi

2miωci

;

=0.71nkTeu󰀊+

3nkTe

thermalgradientheatfluxelectronthermal

eee

qe=−κ∇(kT)−κ∇(kT)−κee⊥T󰀊󰀊⊥∧b×∇⊥(kTe);eκ󰀊

=3.2

nkTeτe

(Wxx+Wyy)−(Wxx+Wyy)+

η1η1

2τmeωcee

;

e

κ∧

=

5nkTe

22

Pxz=Pzx=−η2Wxz

Pzz=−η0Wzz

(herethezaxisisdefinedparalleltoB);ionviscosity

iη0iη3

Pyz=Pzy=−η2Wyz+η4Wxz;

(Wxx−Wyy);2

−η4Wyz;

=0.96nkTiτi;=nkTi

iη1

=;

3nkTi

2τ5ωcii

;

ωci

e

η1

electronviscosity

eη0eη3

=0.73nkTeτe;=−

nkTe

=0.51ωce

.

nkTe

2τωcee

;

Forbothspeciestherate-of-straintensorisdefinedas

Wjk=

∂vj

∂xj

−2

lre(L⊥󰀙reinauniformfield),

39

whereL󰀊isamacroscopicscaleparalleltothefieldBandL⊥isthesmallerofB/|∇⊥B|andthetransverseplasmadimension.Inaddition,thestandardtransportcoefficientsarevalidonlywhen(3)theCoulomblogarithmsatisfiesλ󰀙1;(4)theelectrongyroradiussatisfiesre󰀙λD,or8πnemec2󰀙B2;(5)relativedriftsu=vα−vβbetweentwospeciesaresmallcomparedwiththethermalvelocities,i.e.,u2󰀘kTα/mα,kTβ/mβ;and(6)anomaloustransportprocessesowingtomicroinstabilitiesarenegligible.

WeaklyIonizedPlasmas

Collisionfrequencyforscatteringofchargedparticlesofspeciesαbyneutralsis

α|0

να=n0σs(kTα/mα)1/2,

α\\0

wheren0istheneutraldensityandσsisthecrosssection,typically∼5×10−15cm2andweaklydependentontemperature.

WhenthesystemissmallcomparedwithaDebyelength,L󰀘λD,thechargedparticlediffusioncoefficientsare

Dα=kTα/mανα,

Intheoppositelimit,bothspeciesdiffuseattheambipolarrate

DA=

µiDe−µeDi

,

TiDe+TeDi

whereµα=eα/mαναisthemobility.Theconductivityσαsatisfiesσα=nαeαµα.

InthepresenceofamagneticfieldBthescalarsµandσbecometensors,

J

α

α

·E=σ󰀊E󰀊+σ⊥E⊥+σ∧E×b,

ααα

whereb=B/Band

ασ󰀊=nαeα2/mανα;

σ⊥=σ󰀊να/(να+ωcα);

αα2σ∧=σ󰀊ναωcα/(να2+ωcα).

αα222

Hereσ⊥andσ∧arethePedersenandHallconductivities,respectively.

40

IONOSPHERICPARAMETERS23

Thefollowingtablesgiveaveragenighttimevalues.Wheretwonumbersareentered,thefirstreferstothelowerandthesecondtotheupperportionofthelayer.

Quantity

Altitude(km)

Numberdensity(m−3)Height-integratednumberdensity(m−2)Ion-neutralcollisionfrequency(sec−1)Iongyro-/collisionfrequencyratioκiIonPedersonfactorκi/(1+κi2)IonHallfactorκi2/(1+κi2)

Electron-neutralcollisionfrequencyElectrongyro-/collisionfrequencyratioκeElectronPedersenfactorκe/(1+κe2)ElectronHallfactorκe2/(1+κe2)MeanmolecularweightIongyrofrequency(sec−1)Neutraldiffusion

coefficient(m2sec−1)

FRegion160–5005×1010–2×1011

4.5×10150.5–0.054.6×102–5.0×1032.2×10−3–2×10−4

1.080–10

7.8×104–6.2×10510−5–1.5×10−6

1.022–16230–300105

Theterrestrialmagneticfieldinthelowerionosphereatequatoriallatti-tudesisapproximatelyB0=0.35×10−4tesla.Theearth’sradiusisRE=6371km.

41

SOLARPHYSICSPARAMETERS24

SymbolM󰀋R󰀋g󰀋v∞——BmaxT0L󰀋Fτ5

fromphotosphere

Astronomicalunit(radiusofearth’sorbit)Solarconstant(intensityat1AU)ChromosphereandCorona25

Parameter(Units)

(ergcm−2s−1)

LowchromosphereMiddlechromosphereUpperchromosphereTotal

Transitionlayerpressure(dynecm−2)Coronaltemperature(K)at1.1R󰀋Coronalenergylosses(ergcm−2s−1)

ConductionRadiationSolarWindTotalSolarwindmassloss(gcm−2s−1)

QuietSun

ActiveRegion

1.50×10131.36×106

Unitsgcmcms−2cms−1gcm−2s−1

gcm−2

GKergs−1ergcm−2s−1

2×1062×1063×1054×1060.071066×1041047×1058×1052×10−10

42

THERMONUCLEARFUSION26

Naturalabundanceofisotopes:

hydrogenheliumlithium

Massratios:

nD/nH=1.5×10−4

nHe3/nHe4=1.3×10−6nLi6/nLi7=0.08

2.72×10−41.65×10−21.82×10−41.35×10−2

====1/36701/60.61/54961/74.1

me/mD=(me/mD)1/2=me/mT=(me/mT)1/2=

Absorbedradiationdoseismeasuredinrads:1rad=102ergg−1.Thecurie(abbreviatedCi)isameasureofradioactivity:1curie=3.7×1010countssec−1.Fusionreactions(branchingratiosarecorrectforenergiesnearthecrosssectionpeaks;anegativeyieldmeansthereactionisendothermic):27

(1a)D+D−−−−→T(1.01MeV)+p(3.02MeV)

50%

(1b)−−−−→He3(0.82MeV)+n(2.45MeV)

50%

(2)D+T−−−−→He4(3.5MeV)+n(14.1MeV)

(3)(4)(5a)(5b)(5c)(6)(7a)(7b)(8)(9)(10)

D+He3−−−−→He4(3.6MeV)+p(14.7MeV)T+T

−−−−→He4+2n+11.3MeV

He3+T−−−−→He4+p+n+12.1MeV

51%−−−−→He4(4.8MeV)+D(9.5MeV)43%−−−−→He5(2.4MeV)+p(11.9MeV)6%6

p+Li−−−−→He4(1.7MeV)+He3(2.3MeV)p+Li7−−−−→2He4+17.3MeV

20%−−−−→Be7+n−1.6MeV80%6

D+Li−−−−→2He4+22.4MeVp+B11−−−−→3He4+8.7MeV

n+Li6−−−−→He4(2.1MeV)+T(2.7MeV)

Thetotalcrosssectioninbarns(1barn=10−24cm2)asafunctionofE,the

energyinkeVoftheincidentparticle[thefirstionontheleftsideofEqs.(1)–(5)],assumingthetargetionatrest,canbefittedby28

σT(E)=

A5+(A4−A3E)+1

󰀌

2

󰀎−1

A2

wheretheDuanecoefficientsAjfortheprinciplefusionreactionsareasfollows:

D–D(1b)

A1A2A3A4A5

ReactionratesTemperature

(1a+1b)1.5×10−225.4×10−211.8×10−191.2×10−185.2×10−182.1×10−174.5×10−178.8×10−171.8×10−162.2×10−16

D–T

(3)10−26

1.4×10−236.7×10−212.3×10−193.8×10−185.4×10−171.6×10−162.4×10−162.3×10−161.8×10−16

T–T

(5a–c)10−2810−25

2.1×10−221.2×10−202.6×10−195.3×10−182.7×10−179.2×10−172.9×10−165.2×10−16

47.88482

3.08×10−4

1.1770

D–He3(3)89.27259003.98×10−3

1.297647

T–He3(5a–c)123.111250000

σv)DD=2.33×10(

−14

T

−2/3

exp(−18.76T

−1/3

)cmsec

3

−1

;

PDT

σv)DDwattcm−3(includingthesubsequent

D–Treaction);

=5.6×10−13nDnT(

σv)DHe3wattcm−3.

44

RELATIVISTICELECTRONBEAMS

Hereγ=(1−β2)−1/2istherelativisticscalingfactor;quantitiesinanalyticformulasareexpressedinSIorcgsunits,asindicated;innumericalformulas,Iisinamperes(A),Bisingauss(G),electronlineardensityNisincm−1,andtemperature,voltageandenergyareinMeV;βz=vz/c;kisBoltzmann’sconstant.

Relativisticelectrongyroradius:

re=

mc2

ν

I=

A

a

=

ν

Child’slaw:(non-relativistic)space-charge-limitedcurrentdensitybetweenparallelplateswithvoltagedropV(inMV)andseparationd(incm)is

J=2.34×103V3/2d−2Acm−2.

Thesaturatedparapotentialcurrent(magneticallyself-limitedflowalongequi-potentialsinpincheddiodesandtransmissionlines)is29

Ip=8.5×10Gγlnγ+(γ−1)

3

whereGisageometricalfactordependingonthediodestructure:G=

w

󰀌

21/2

󰀎

A,

R1

G=

Rc

󰀖−1

forcylindersofradiiR1(inner)andR2(outer);

BEAMINSTABILITIES30

NameElectron-electronBunemanBeam-plasmaWeakbeam-plasmaBeam-plasma(hot-electron)Ionacoustic

Anisotropictemperature(hydro)IoncyclotronBeam-cyclotron(hydro)Modifiedtwo-stream(hydro)Ion-ion(equalbeams)Ion-ion(equalbeams)

Fornomenclature,seep.50.

SaturationMechanismElectronV¯trappinguntilej∼VdElectrontrappingV¯untile∼VdTrappingofbeamelectronsQuasilinearornonlinear(modecoupling)QuasilinearornonlinearQuasilinear,iontailform-ation,nonlinearscattering,orresonancebroadening.Isotropization

Ionheating

ResonancebroadeningTrappingIontrappingIontrapping

47

ParametersofMostUnstableMode

GrowthRate

1

0

0.4

WaveNumber

Vdωe

2

0.70.7

󰀔

󰀔

mnb

󰀔󰀔

m

ωe−0.4

Vb

nb

ωe

3

Vb

nb

(hot-electron)Ionacoustic

󰀔

¯bVnb

󰀖2

Vb

ωeωe

ωe

¯23Ve

M

󰀖1/2

Ωe

¯eV

Vb

1

λ−D−1re

ωi

0.1Ωi

Beam-cyclotron(hydro)Modifiedtwo-2ΩH

nΩe

−1ri

1.7

ΩH

3>Vd;∼¯iV

0.4ΩH

beams)Ion-ion(equal

0

1.2

ΩH

0

U

Intheprecedingtables,subscriptse,i,d,b,pstandfor“electron,”“ion,”“drift,”“beam,”and“plasma,”respectively.Thermalvelocitiesaredenotedbyabar.Inaddition,thefollowingareused:mMVT

ne,nin

Cs=(Te/M)1/2ωe,ωiλD

electronmassionmassvelocity

temperaturenumberdensityharmonicnumberionsoundspeedplasmafrequencyDebyelength

re,riβVA

Ωe,ΩiΩHU

gyroradius

plasma/magneticenergydensityratioAlfv´enspeedgyrofrequency

hybridgyrofrequency,ΩH2=ΩeΩi

relativedriftvelocityoftwoionspecies

APPROXIMATEMAGNITUDESINSOMETYPICALPLASMAS

PlasmaTypeInterstellargasGaseousnebulaSolarCoronaDiffusehotplasmaSolaratmosphere,gasdischargeWarmplasmaHotplasmaThermonuclearplasmaThetapinchDensehotplasmaLaserPlasma

TeV11102102110102104102102102

λDcm7×102

202×10−17×10−37×10−52×10−47×10−42×10−37×10−57×10−67×10−7

νeisec−17×10−56×10−2

60402×109

1074×1065×1043×1082×10102×1012

Thediagram(facing)givescomparableinformationingraphicalform.22

49

50

LASERS

SystemParameters

Efficienciesandpowerlevelsareapproximate.31

Type

10.652.061.3151.061.0641.045,1.54,1.3131.0642.941–40.7–1.50.69430.63280.45–0.600.3–100.33710.3–1.10.260.1751.05–1.11.5340.375–1.9

Efficiency

Powerlevelsavailable(W)Pulsed>2×1013>109>1073×10121.25×1015

1094×108–1.5×1055×10810141010–5×10410101065×1071012>1085×1077×1063×109

Formulas

Ane-mwavewithk󰀖Bhasanindexofrefractiongivenby

n±=[1−ωpe/ω(ω∓ωce)]

2

1/2

,

where±referstothehelicity.Therateofchangeofpolarizationangleθasafunctionofdisplacements(Faradayrotation)isgivenby

dθ/ds=(k/2)(n−−n+)=2.36×10NBf

4

−2

cm

−1

,

whereNistheelectronnumberdensity,Bisthefieldstrength,andfisthewavefrequency,allincgs.

Thequivervelocityofanelectroninane-mfieldofangularfrequencyωis

v0=eEmax/mω=25.6I1/2λ0cmsec−1

2

intermsofthelaserfluxI=cEmax/8π,withIinwatt/cm2,laserwavelengthλ0inµm.Theratioofquiverenergytothermalenergyis

Wqu/Wth=mev02/2kT=1.81×10−13λ02I/T,

whereTisgivenineV.Forexample,ifI=1015Wcm−2,λ0=1µm,T=2keV,thenWqu/Wth≈0.1.

Pondermotiveforce:

F=N∇󰀗E󰀜/8πNc,

where

Nc=1.1×1021λ0−2cm−3.

2

Foruniformilluminationofalenswithf-numberF,thediameterdatfocus(85%oftheenergy)andthedepthoffocusl(distancetofirstzeroinintensity)aregivenby

d≈2.44Fλθ/θDL

and

l≈±2Fλθ/θDL.

2

Hereθisthebeamdivergencecontaining85%ofenergyandθDListhediffraction-limiteddivergence:

θDL=2.44λ/b,

wherebistheaperture.Theseformulasaremodifiedfornonuniform(suchasGaussian)illuminationofthelensorforpathologicallaserprofiles.

52

ATOMICPHYSICSANDRADIATION

EnergiesandtemperaturesareineV;allotherunitsarecgsexceptwherenoted.Zisthechargestate(Z=0referstoaneutralatom);thesubscriptelabelselectrons.Nreferstonumberdensity,ntoprincipalquantumnumber.Asterisksuperscriptsonlevelpopulationdensitiesdenotelocalthermodynamicequilibrium(LTE)values.ThusNn*istheLTEnumberdensityofatoms(orions)inleveln.

Characteristicatomiccollisioncrosssection:(1)

πa02=8.80×10−17cm2.

Bindingenergyofouterelectroninlevellabelledbyquantumnumbersn,l:

Z

E∞(n,l)

H

Z2E∞

(2)=−

󰁎∆Enm

cm2,

wherefmnistheoscillatorstrength,g(n,m)istheGauntfactor,󰁎istheincidentelectronenergy,and∆Enm=En−Em.

ElectronexcitationrateaveragedoverMaxwellianvelocitydistribution,Xmn=Ne󰀗σmnv󰀜(Refs.34,35):(4)

Xmn=1.6×10

−5

fmn󰀗g(n,m)󰀜Ne

Te

󰀖

sec

−1

,

where󰀗g(n,m)󰀜denotesthethermalaveragedGauntfactor(generally∼1foratoms,∼0.2forions).

53

Rateforelectroncollisionaldeexcitation:(5)

Ynm=(Nm*/Nn*)Xmn.

HereNm*/Nn*=(gm/gn)exp(∆Enm/Te)istheBoltzmannrelationforlevelpopulationdensities,wheregnisthestatisticalweightofleveln.Rateforspontaneousdecayn→m(EinsteinAcoefficient)34(6)

Anm=4.3×10(gm/gn)fmn(∆Enm)sec

7

2

−1

.

Intensityemittedperunitvolumefromthetransitionn→minanopticallythinplasma:(7)

Inm=1.6×10−19AnmNn∆Enmwatt/cm3.

Conditionforsteadystateinacoronamodel:(8)

N0Ne󰀗σ0nv󰀜=NnAn0,

wherethegroundstateislabelledbyazerosubscript.Henceforatransitionn→minions,where󰀗g(n,0)󰀜≈0.2,(9)

Inm=5.1×10

−25fnmgmNeN0

∆En0

󰀖3

exp

󰀔

∆En0

cm3

.

IonizationandRecombination

Inageneraltime-dependentsituationthenumberdensityofthechargestateZsatisfies(10)

dN(Z)

Classicalionizationcross-section36foranyatomicshellj(11)

σi=6×10−14bjgj(x)/Uj2cm2.

Herebjisthenumberofshellelectrons;Ujisthebindingenergyoftheejectedelectron;x=󰁎/Uj,where󰁎istheincidentelectronenergy;andgisauniversalfunctionwithaminimumvaluegmin≈0.2atx≈4.

Ionizationfromiongroundstate,averagedoverMaxwellianelectrondistribu-ZS(Z)=10−5

Z1/2

(Te/E∞)

Te

󰀖

cm3/sec,

Z

whereE∞istheionizationenergy.

Electron-ionradiativerecombinationrate(e+N(Z)→N(Z−1)+hν)forTe/Z2<∼400eV(Ref.37):(13)

αr(Z)=5.2×10

−14

Z

󰀔

Z

E∞

2

Z

ln(E∞/Te)

Z

+0.469(E∞/Te)−1/3cm3/sec.

󰀁

For1eVαr(Z)=2.7×10

−13

ZTe

2

−1/2

cm/sec.

3

Collisional(three-body)recombinationrateforsinglyionizedplasma:38(15)

α3=8.75×10

−27

Te

−4.5

cm/sec.

6

Photoionizationcrosssectionforionsinleveln,l(short-wavelengthlimit):(16)

σph(n,l)=1.64×10

−16

Z/nK

537+2l

cm,

2

whereKisthewavenumberinRydbergs(1Rydberg=1.0974×105cm−1).

55

IonizationEquilibriumModels

Sahaequilibrium:39

NeN1*(Z)

Z−1gn

(17)exp

󰀔

ZE∞(n,l)

N*(Z−1)

=

S(Z−1)

N(Z)

=

αr

Radiation

N.B.EnergiesandtemperaturesareineV;allotherquantitiesareincgsunitsexceptwherenoted.Zisthechargestate(Z=0referstoaneutralatom);thesubscriptelabelselectrons.Nisnumberdensity.

Averageradiativedecayrateofastatewithprincipalquantumnumbernis(23)

An=

m󰀏

Anm=1.6×1010Z4n−9/2sec.

Naturallinewidth(∆EineV):(24)

∆E∆t=h=4.14×10

−15

eVsec,

where∆tisthelifetimeoftheline.Dopplerwidth:(25)

∆λ/λ=7.7×10−5(T/µ)1/2,

whereµisthemassoftheemittingatomorionscaledbytheprotonmass.OpticaldepthforaDoppler-broadenedline:39(26)τ=3.52×10

−13

fnmλ(Mc/kT)

21/2

NL=5.4×10

−9

fmnλ(µ/T)

1/2

NL,

wherefnmistheabsorptionoscillatorstrength,λisthewavelength,andListhephysicaldepthoftheplasma;M,N,andTarethemass,numberdensity,andtemperatureoftheabsorber;µisMdividedbytheprotonmass.Opticallythinmeansτ<1.

Resonanceabsorptioncrosssectionatcenterofline:(27)

σλ=λc=5.6×10−13λ2/∆λcm2.

Wiendisplacementlaw(wavelengthofmaximumblack-bodyemission):(28)

λmax=2.50×10−5T−1cm.

RadiationfromthesurfaceofablackbodyattemperatureT:(29)

W=1.03×105T4watt/cm2.

57

Bremsstrahlungfromhydrogen-likeplasma:26(30)

PBr=1.69×10

−32

NeTe

1/2

wherethesumisoverallionizationstatesZ.Bremsstrahlungopticaldepth:41(31)

τ=5.0×10

−38

󰀏󰀌

ZN(Z)watt/cm,

2

󰀎

3

NeNiZ

2

g≈1.2isanaverageGauntfactorandListhephysicalpathlength.

Inversebremsstrahlungabsorptioncoefficient42forradiationofangularfre-quencyω:(32)

2

κ=3.1×10−7Zne2lnΛT−3/2ω−2(1−ωp/ω2)−1/2cm−1;

hereΛistheelectronthermalvelocitydividedbyV,whereVisthelargerof

ωandωpmultipliedbythelargerofZe2/kTandh¯/(mkT)1/2.Recombination(free-bound)radiation:(33)

Pr=1.69×10

−32

NeTe

1/2

󰀏󰀕

ZN(Z)

2

󰀔

Z−1

E∞

2.5+γ

sec,

whereγisthekineticplusrestenergydividedbytherestenergymc2.Numberofcyclotronharmonics41trappedinamediumoffinitedepthL:(37)

whereβ=8πNkT/B2.

LineradiationisgivenbysummingEq.(9)overallspeciesintheplasma.

mtr=(57βBL)

1/6

,

58

ATOMICSPECTROSCOPY

Spectroscopicnotationcombinesobservationalandtheoreticalelements.Observationally,spectrallinesaregroupedinserieswithlinespacingswhichdecreasetowardtheserieslimit.Everylinecanberelatedtheoreticallytoatransitionbetweentwoatomicstates,eachidentifiedbyitsquantumnumbers.Ionizationlevelsareindicatedbyromannumerals.ThusCIisunionizedcarbon,CIIissinglyionized,etc.Thestateofaone-electronatom(hydrogen)orion(HeII,LiIII,etc.)isspecifiedbyidentifyingtheprincipalquantumnumbern=1,2,...,theorbitalangularmomentuml=0,1,...,n−1,andthespinangularmomentums=±1

1

2(j≥

1+m/M

=−

RyZ2

TransitionName

Successivelinesinanyseriesaredenotedα,β,γ,etc.Thusthetransition1→3givesrisetotheLyman-βline.Relativisticeffects,quantumelectrodynamiceffects(e.g.,theLambshift),andinteractionsbetweenthenuclearmagnetic

59

momentandthemagneticfieldduetotheelectronproducesmallshiftsand

−2

splittings,Inmany-electronatomstheelectronsaregroupedinclosedandopenshells,withspectroscopicpropertiesdeterminedmainlybytheoutershell.Shellenergiesdependprimarilyonn;theshellscorrespondington=1,2,3,...arecalledK,L,M,etc.Ashellismadeupofsubshellsofdifferentangularmomenta,eachlabeledaccordingtothevaluesofn,l,andthenumberofelectronsitcontainsoutofthemaximumpossiblenumber,2(2l+1).Forexample,2p5indicatesthatthereare5electronsinthesubshellcorrespondingtol=1(denotedbyp)andn=2.

Inthelighterelementstheelectronsfillupsubshellswithineachshellintheorders,p,d,etc.,andnoshellacquireselectronsuntilthelowershellsarefull.Intheheavierelementsthisruledoesnotalwayshold.Butifaparticularsubshellisfilledinanoblegas,thenthesamesubshellisfilledintheatomsofallelementsthatcomelaterintheperiodictable.Thegroundstateconfigurationsofthenoblegasesareasfollows:

HeNeArKrXeRn

1s2

1s22s22p6

1s22s22p63s23p6

1s22s22p63s23p63d104s24p6

1s22s22p63s23p63d104s24p64d105s25p6

1s22s22p63s23p63d104s24p64d104f145s25p65d106s26p6

Alkalimetals(Li,Na,K,etc.)resemblehydrogen;theirtransitionsarede-scribedbygivingnandlintheinitialandfinalstatesforthesingleouter(valence)electron.

Forgeneraltransitionsinmostatomstheatomicstatesarespecifiedintermsoftheparity(−1)Σliandthemagnitudesoftheorbitalangularmomen-tumL=Σli,thespinS=Σsi,andthetotalangularmomentumJ=L+S,whereallsumsarecarriedoutovertheunfilledsubshells(thefilledonessumtozero).IfamagneticfieldispresenttheprojectionsML,MS,andMofL,S,andJalongthefieldarealsoneeded.Thequantumnumberssatisfy|ML|≤L≤νl,|MS|≤S≤ν/2,and|M|≤J≤L+S,whereνisthenumberofelectronsintheunfilledsubshell.Upper-caselettersS,P,D,etc.,standforL=0,1,2,etc.,inanalogywiththenotationforasingleelectron.Forexample,thegroundstateofClisdescribedby3p52Po3/2.Thefirstpartindicatesthatthereare5electronsinthesubshellcorrespondington=3andl=1.(Theclosedinnersubshells1s22s22p63s2,identicalwiththeconfigura-tionofMg,areusuallyomitted.)Thesymbol‘P’indicatesthattheangularmomentaoftheouterelectronscombinetogiveL=1.Theprefix‘2’repre-sentsthevalueofthemultiplicity2S+1(thenumberofstateswithnearlythesameenergy),whichisequivalenttospecifyingS=1

thevalueofJ.Thesuperscript‘o’indicatesthatthestatehasoddparity;itwouldbeomittedifthestatewereeven.

Thenotationforexcitedstatesissimilar.Forexample,heliumhasastate1s2sS1whichlies19.72eV(159,856cm−1)abovethegroundstate1s21S0.Butthetwo“terms”donot“combine”(transitionsbetweenthemdonotoccur)becausethiswouldviolate,e.g.,thequantum-mechanicalselectionrulethattheparitymustchangefromoddtoevenorfromeventoodd.Forelectricdipoletransitions(theonlyonespossibleinthelong-wavelengthlimit),otherselectionrulesarethatthevalueoflofonlyoneelectroncanchange,andonlyby∆l=±1;∆S=0;∆L=±1or0;and∆J=±1or0(butL=0doesnotcombinewithL=0andJ=0doesnotcombinewithJ=0).Transitionsarepossiblebetweentheheliumgroundstate(whichhasS=0,L=0,J=0,andevenparity)and,e.g.,thestate1s2p1Po1(withS=0,L=1,J=1,oddparity,excitationenergy21.22eV).Theserulesholdaccuratelyonlyforlightatomsintheabsenceofstrongelectricormagneticfields.Transitionsthatobeytheselectionrulesarecalled“allowed”;thosethatdonotarecalled“forbidden.”

3

Theamountofinformationneededtoadequatelycharacterizeastatein-creaseswiththenumberofelectrons;thisisreflectedinthenotation.Thus43OIIhasanallowedtransitionbetweenthestates2p23p󰀉2o

F7/2and2p2(1D)3d󰀉2F7/2(andbetweenthestatesobtainedbychangingJfrom7/2to5/2ineitherorbothterms).Herebothstateshavetwoelec-tronswithn=2andl=1;theclosedsubshells1s22s2arenotshown.Theouter(n=3)electronhasl=1inthefirststateandl=2inthesecond.Theprimeindicatesthatiftheoutermostelectronwereremovedbyionization,theresultingionwouldnotbeinitslowestenergystate.Theexpression(1D)givethemultiplicityandtotalangularmomentumofthe“parent”term,i.e.,thesubshellimmediatelybelowthevalencesubshell;thisisunderstoodtobethesameinbothstates.(Grandparents,etc.,sometimeshavetobespecifiedinheavieratomsandions.)Anotherexample43istheallowedtransitionfrom

2o21󰀉2

2p2(3P)3p2Po(orP)to2p(D)3dS1/2,inwhichthereisa“spin1/23/2

flip”(fromantiparalleltoparallel)inthen=2,l=1subshell,aswellaschangesfromonestatetotheotherinthevalueoflforthevalenceelectronandinL.

Thedescriptionoffinestructure,StarkandZeemaneffects,spectraofhighlyionizedorheavyatoms,etc.,ismorecomplicated.ThemostimportantdifferencebetweenopticalandX-rayspectraisthatthelatterinvolveenergychangesoftheinnerelectronsratherthantheouterones;oftenseveralelectronsparticipate.

61

COMPLEX(DUSTY)PLASMAS

Complex(dusty)plasmas(CDPs)mayberegardedasanewandunusualstateofmatter.CDPscontainchargedmicroparticles(dustgrains)inadditiontoelectrons,ions,andneutralgas.Electrostaticcouplingbetweenthegrainscanvaryoverawiderange,sothatthestatesofCDPscanchangefromweaklycoupled(gaseous)tocrystalline.CDPscanbeinvestigatedatthekineticlevel(individualparticlesareeasilyvisualizedandrelevanttimescalesareaccessi-ble).CDPsareofinterestasanon-Hamiltoniansystemofinteractingparticlesandasameanstostudygenericfundamentalphysicsofself-organization,pat-ternformation,phasetransitions,andscaling.Theirdiscoveryhasthereforeopenednewwaysofprecisioninvestigationsinmany-particlephysics.Typicalexperimentaldustproperties

grainsize(radius)a󰀝0.3−30µm,massmd∼3×10−7−3×10−13g,numberdensity(intermsoftheinterparticledistance)nd∼∆−3∼103−107cm−3,temperatureTd∼3×10−2−102eV.Typicaldischarge(bulk)plasmas

gaspressurep∼10−2−1Torr,Ti󰀝Tn󰀝3×10−2eV,vTi󰀝7×104cm/s(Ar),Te∼0.3−3eV,ni󰀝ne∼108−1010cm−3,screeninglengthλD󰀝λDi∼20−200µm,ωpi󰀝2×106−2×107s−1(Ar).BfieldsuptoB∼3T.Dimensionless

Havnesparameter

normalizedcharge

dust-dustscatteringparameterdust-plasmascatteringparametercouplingparameterlatticeparameterparticleparameter

latticemagnetizationparameter

P=|Z|nd/nez=|Z|e2/kTeaβd=Z2e2/kTdλDβe,i=|Z|e2/kTe,iλD

Γ=(Z2e2/kTd∆)exp(−∆/λD)κ=∆/λDα=a/∆µ=∆/rd

Typicalexperimentalvalues:P∼10−4−102,z󰀝2−4(Z∼103−105electroncharges),Γ<103,κ∼0.3−10,α∼10−4−3×10−2,µ<1Frequencies

dustplasmafrequency

ωpd=(4πZ2e2nd/md)1/2

󰀝(|Z|

P

dust-gasfrictionratedustgyrofrequencyVelocities

dustthermalvelocityνnd∼10a2p/mdvTnωcd=ZeB/mdc

vTd=(kTd/md)1/2≡[

Td

md

]1/2vTi

dustacousticwavevelocity

CDA=ωpdλD

󰀝(|Z|

P

8πa2nevTeexp(−z),

Ii=

Tz

i

󰀖

.

Grainsarechargednegatively.Thegrainchargecanvaryinresponsetospatialandtemporalvariationsoftheplasma.Chargefluctuationsarealwayspresent,withfrequencyωch.Otherchargingmechanismsarephotoemission,secondaryemission,thermionicemission,fieldemission,etc.Chargeddustgrainschangetheplasmacomposition,keepingquasineutrality.AmeasureofthisistheHavnesparameterP=|Z|nd/ne.ThebalanceofIeandIiyields

exp(−z)=

󰀔

mi

Te

󰀖1/2󰀔

1+

Te

Whentherelativechargedensityofdustislarge,P󰀙1,thegrainchargeZmonotonicallydecreases.

Forcesandmomentumtransfer

Inadditiontotheusualelectromagneticforces,grainsincomplexplasmasarealsosubjectto:gravityforceFg=mdg;thermophoreticforce

√4

(a2/vTn)κn∇TnFth=−

15(whereκnisthecoefficientofgasthermalconductivity);forcesassociatedwiththemomentumtransferfromotherspecies,Fα=−mdναdVαd,i.e.,neutral,ion,andelectrondrag.Forcollisionsbetweenchargedparticles,twolimitingcasesaredistinguishedbythemagnitudeofthescatteringparameterβα.Whenβα󰀘1theresultisindependentofthesignofthepotential.Whenβα󰀙1,theresultsforrepulsiveandattractiveinteractionpotentialsaredifferent.Fortypicalcomplexplasmasthehierarchyofscatteringparametersisβe(∼0.01−0.3)󰀘βi(∼1−30)󰀘βd(∼103−3×104).Thegenericexpressionsfordifferenttypesofcollisionsare47

ναd=(4

2

Ion-dustcollisions

Φid=

z2Λed

βe󰀘1

󰀃1

Forrepulsiveinteraction(electron-dustanddust-dust)Λαd=zα

󰀑

∞0

e−zαxln[1+4(λD/aα)2x2]dx−2zα

󰀑

e−zαxln(2x−1)dx,

1

whereze=z,ae=a,andad=2a.Forion-dust(attraction)

Λid󰀝z

󰀑

∞0

e−zxln

󰀕

1+2(Ti/Te)(λD/a)x

REFERENCES

Whenanyoftheformulasanddatainthiscollectionarereferenced

inresearchpublications,itissuggestedthattheoriginalsourcebecitedratherthantheFormulary.Mostofthismaterialiswellknownand,forallpracticalpurposes,isinthe“publicdomain.”Numerouscolleaguesandreaders,toonumeroustolistbyname,havehelpedincollectingandshapingtheFormularyintoitspresentform;theyaresincerelythankedfortheirefforts.

Severalbook-lengthcompilationsofdatarelevanttoplasmaphysics

areavailable.Thefollowingareparticularlyuseful:

C.W.Allen,AstrophysicalQuantities,3rdedition(AthlonePress,Lon-don,1976).

A.Anders,AFormularyforPlasmaPhysics(Akademie-Verlag,Berlin,1990).

H.L.Anderson(Ed.),APhysicist’sDeskReference,2ndedition(Amer-icanInstituteofPhysics,NewYork,1989).

K.R.Lang,AstrophysicalFormulae,2ndedition(Springer,NewYork,1980).

Thebooksandarticlescitedbelowareintendedprimarilynotforthepurposeofgivingcredittotheoriginalworkers,but(1)toguidethereadertosourcescontainingrelatedmaterialand(2)toindicatewheretofindderivations,ex-planations,examples,etc.,whichhavebeenomittedfromthiscompilation.AdditionalmaterialcanalsobefoundinD.L.Book,NRLMemorandumRe-portNo.3332(1977).

1.SeeM.AbramowitzandI.A.Stegun,Eds.,HandbookofMathematical

Functions(Dover,NewYork,1968),pp.1–3,foratabulationofsomemathematicalconstantsnotavailableonpocketcalculators.2.H.W.Gould,“NoteonSomeBinomialCoefficientIdentitiesofRosen-baum,”J.Math.Phys.10,49(1969);H.W.GouldandJ.Kaucky,“Eval-uationofaClassofBinomialCoefficientSummations,”J.Comb.Theory1,233(1966).3.B.S.Newberger,“NewSumRuleforProductsofBesselFunctionswith

ApplicationtoPlasmaPhysics,”J.Math.Phys.23,1278(1982);24,2250(1983).4.P.M.MorseandH.Feshbach,MethodsofTheoreticalPhysics(McGraw-HillBookCo.,NewYork,1953),Vol.I,pp.47–52andpp.656–666.

66

5.W.D.Hayes,“ACollectionofVectorFormulas,”PrincetonUniversity,

Princeton,NJ,1956(unpublished),andpersonalcommunication(1977).6.SeeQuantities,UnitsandSymbols,reportoftheSymbolsCommittee

oftheRoyalSociety,2ndedition(RoyalSociety,London,1975)foradiscussionofnomenclatureinSIunits.7.E.R.CohenandB.N.Taylor,“The1986AdjustmentoftheFundamental

PhysicalConstants,”CODATABulletinNo.63(PergamonPress,NewYork,1986);J.Res.Natl.Bur.Stand.92,85(1987);J.Phys.Chem.Ref.Data17,1795(1988).8.E.S.Weibel,“DimensionallyCorrectTransformationsbetweenDifferent

SystemsofUnits,”Amer.J.Phys.36,1130(1968).9.J.Stratton,ElectromagneticTheory(McGraw-HillBookCo.,NewYork,

1941),p.508.10.ReferenceDataforEngineers:Radio,Electronics,Computer,andCom-munication,7thedition,E.C.Jordan,Ed.(SamsandCo.,Indianapolis,IN,1985),Chapt.1.ThesedefinitionsareInternationalTelecommunica-tionsUnion(ITU)Standards.11.H.E.Thomas,HandbookofMicrowaveTechniquesandEquipment

(Prentice-Hall,EnglewoodCliffs,NJ,1972),p.9.FurthersubdivisionsaredefinedinRef.10,p.I–3.12.J.P.CatchpoleandG.Fulford,Ind.andEng.Chem.58,47(1966);

reprintedinrecenteditionsoftheHandbookofChemistryandPhysics(ChemicalRubberCo.,Cleveland,OH)onpp.F306–323.13.W.D.Hayes,“TheBasicTheoryofGasdynamicDiscontinuities,”inFun-damentalsofGasDynamics,Vol.III,HighSpeedAerodynamicsandJetPropulsion,H.W.Emmons,Ed.(PrincetonUniversityPress,Princeton,NJ,1958).14.W.B.Thompson,AnIntroductiontoPlasmaPhysics(Addison-Wesley

PublishingCo.,Reading,MA,1962),pp.86–95.15.L.D.LandauandE.M.Lifshitz,FluidMechanics,2ndedition(Addison-WesleyPublishingCo.,Reading,MA,1987),pp.320–336.16.TheZfunctionistabulatedinB.D.FriedandS.D.Conte,ThePlasma

DispersionFunction(AcademicPress,NewYork,1961).17.R.W.LandauandS.Cuperman,“StabilityofAnisotropicPlasmasto

Almost-PerpendicularMagnetosonicWaves,”J.PlasmaPhys.6,495(1971).

67

18.B.D.Fried,C.L.Hedrick,J.McCune,“Two-PoleApproximationforthe

PlasmaDispersionFunction,”Phys.Fluids11,249(1968).19.B.A.Trubnikov,“ParticleInteractionsinaFullyIonizedPlasma,”Re-viewsofPlasmaPhysics,Vol.1(ConsultantsBureau,NewYork,1965),p.105.20.J.M.Greene,“ImprovedBhatnagar–Gross–KrookModelofElectron-Ion

Collisions,”Phys.Fluids16,2022(1973).21.S.I.Braginskii,“TransportProcessesinaPlasma,”ReviewsofPlasma

Physics,Vol.1(ConsultantsBureau,NewYork,1965),p.205.22.J.Sheffield,PlasmaScatteringofElectromagneticRadiation(Academic

Press,NewYork,1975),p.6(afterJ.W.Paul).23.K.H.LloydandG.H¨arendel,“NumericalModelingoftheDriftandDe-formationofIonosphericPlasmaCloudsandoftheirInteractionwith

OtherLayersoftheIonosphere,”J.Geophys.Res.78,7389(1973).24.C.W.Allen,AstrophysicalQuantities,3rdedition(AthlonePress,Lon-don,1976),Chapt.9.25.G.L.WithbroeandR.W.Noyes,“MassandEnergyFlowintheSolar

ChromosphereandCorona,”Ann.Rev.Astrophys.15,363(1977).26.S.GlasstoneandR.H.Lovberg,ControlledThermonuclearReactions

(VanNostrand,NewYork,1960),Chapt.2.27.Referencestoexperimentalmeasurementsofbranchingratiosandcross

sectionsarelistedinF.K.McGowan,etal.,Nucl.DataTablesA6,353(1969);A8,199(1970).Theyieldslistedinthetablearecalculateddirectlyfromthemassdefect.28.G.H.Miley,H.TownerandN.Ivich,FusionCrossSectionandReactivi-ties,Rept.COO-2218-17(UniversityofIllinois,Urbana,IL,1974);B.H.Duane,FusionCrossSectionTheory,Rept.BNWL-1685(BrookhavenNationalLaboratory,1972).29.J.M.Creedon,“RelativisticBrillouinFlowintheHighν/γLimit,”

J.Appl.Phys.46,2946(1975).30.See,forexample,A.B.Mikhailovskii,TheoryofPlasmaInstabilities

Vol.I(ConsultantsBureau,NewYork,1974).Thetableonpp.48–49wascompiledbyK.Papadopoulos.

68

31.TablepreparedfromdatacompiledbyJ.M.McMahon(personalcom-munication,D.Book,1990)andA.Ting(personalcommunication,J.D.Huba,2004).32.M.J.Seaton,“TheTheoryofExcitationandIonizationbyElectronIm-pact,”inAtomicandMolecularProcesses,D.R.Bates,Ed.(NewYork,AcademicPress,1962),Chapt.11.33.H.VanRegemorter,“RateofCollisionalExcitationinStellarAtmo-spheres,”Astrophys.J.136,906(1962).34.A.C.KolbandR.W.P.McWhirter,“IonizationRatesandPowerLoss

fromθ-PinchesbyImpurityRadiation,”Phys.Fluids7,519(1964).35.R.W.P.McWhirter,“SpectralIntensities,”inPlasmaDiagnosticTech-niques,R.H.HuddlestoneandS.L.Leonard,Eds.(AcademicPress,NewYork,1965).36.M.Gryzinski,“ClassicalTheoryofAtomicCollisionsI.TheoryofInelastic

Collision,”Phys.Rev.138A,336(1965).37.M.J.Seaton,“RadiativeRecombinationofHydrogenIons,”Mon.Not.

Roy.Astron.Soc.119,81(1959).38.Ya.B.Zel’dovichandYu.P.Raizer,PhysicsofShockWavesandHigh-TemperatureHydrodynamicPhenomena(AcademicPress,NewYork,1966),Vol.I,p.407.39.H.R.Griem,PlasmaSpectroscopy(AcademicPress,NewYork,1966).40.T.F.Stratton,“X-RaySpectroscopy,”inPlasmaDiagnosticTechniques,

R.H.HuddlestoneandS.L.Leonard,Eds.(AcademicPress,NewYork,1965).41.G.Bekefi,RadiationProcessesinPlasmas(Wiley,NewYork,1966).42.T.W.JohnstonandJ.M.Dawson,“CorrectValuesforHigh-Frequency

PowerAbsorptionbyInverseBremsstrahlunginPlasmas,”Phys.Fluids16,722(1973).43.W.L.Wiese,M.W.Smith,andB.M.Glennon,AtomicTransitionProb-abilities,NSRDS-NBS4,Vol.1(U.S.Govt.PrintingOffice,Washington,1966).44.F.M.PeetersandX.Wu,“Wignercrystalofascreened-Coulomb-interactioncolloidalsystemintwodimensions”,Phys.Rev.A35,3109(1987)

69

45.S.Zhdanov,R.A.Quinn,D.Samsonov,andG.E.Morfill,“Large-scale

steady-statestructureofa2Dplasmacrystal”,NewJ.Phys.5,74(2003).46.J.E.Allen,“Probetheory–theorbitalmotionapproach”,Phys.Scripta

45,497(1992).47.S.A.Khrapak,A.V.Ivlev,andG.E.Morfill,“Momentumtransferin

complexplasmas”,Phys.Rev.E(2004).48.V.E.Fortovetal.,“Dustyplasmas”,Phys.Usp.47,447(2004).

70

因篇幅问题不能全部显示,请点此查看更多更全内容