(建筑工程管理)第一章公路工程试验检测技术基础
知识
课时授课计划 课次序号: 1
壹、课题:1.1概述1.2试验检测数据的分析1.3抽样检验基础 二、课型:课堂讲授
三、目的要求:学术通过对本次课的学习,掌握厂误差的表示方法、有效数字的修约规则及计算法则、可疑数据的取舍方法,熟悉抽样检验的基本方法,了解对试验验测得人员要求,试验检测的方法和规程等。
四、重点、难点:本次课的重点内容是有效数字的修约规则及计算规则,可疑数据的取舍方法,其中三种可疑数据的取舍方法因牵扯到较多的概率论知识,是本节课的难点,除上课时应重点讲解外,仍应加强学生的课后练习,以助于学生的掌握。 五、教学方法及手段:讲授 六、参考资料:《公路工程试验检测技术》、《路基路面试验检测技术》、《桥涵工程试验检测技术》
七、作业:1-6、1-7、1-8、1-9 八、授课记录: 授课日期 班次 8.30 土木048 九、授课效果分析:本次可课的内容较多,又要用到较多的数理统计知识,学生掌握起来有壹定的困难,实验室的工作制度等较容易理解的内容可由学生课后自学,以集中时间重点讲解有效数字的修约、计算规则、可疑数据的取舍等重点内容以加深学生的理解。 十、教学进程(教学内容、教学环节及时间分配等) 1、导入课题
公路交通作为我国经济建设中重点投资建设的行业,正以前所未有的规模和速度向前发展,现已完成高速公路通车里程近5万公里,建成各类桥梁40余万座。工程建设普遍采用招投标和工程监理制度,形成政府管理,社会监督和企业自检的质量保证体系。认真做好公路工程的试验检测工作,对推动我国公路工程建设水平的提高具有十分重要的意义。 2、教学内容 1.1概述
壹、试验检测的意义
①对于在施工中的悬索桥、斜拉桥等大跨径桥梁施工各阶段都需对结构的几何位置和受力进行监测,试验检测是施工控制的重要手段。 ②试验检测则是控制施工质量的主要手段。
③对于新型结构、新材料、新工艺,必须通过试验检测鉴定其是否符合国家标准和设计文件的要求,同时为完善设计理论和施工工艺积累实践资料。 ④试验检测又是评价工程质量缺陷和鉴定工程事故的手段。 2、对试验检测人员的要求 3、试验检测的方法和规程 4、试验检测工作细则 5、试验检测原始记录
原始记录是试验检测结果的如实记载,不允许随意更改,不许删减。 1.2试验检测的数据分析 壹、真值
指在壹定条件下,被测量的,客观存在的实际值。 1.理论真值:理论真值也称绝对真值。
如平面三角形三内角之和恒为180º。
2.规定真值:国际上公认的某些基准量值。
如1960年国际计量大会规定“1m等于真空中氪86原子的2P10和5d5能级之间跃迁时辐射的1650763.73个波长的长度”。
3.相对真值:计量器具按精度不同分为若干等级,上壹等级的指示值即为下壹等级的真值,此真值称为相对真值。 二、误差
1.误差的表示方法:绝对误差和相对误差
(1)绝对误差指实测值和被测之量的真值之差,即: ΔL=L-L0
式中:ΔL——绝对误差; L——实测值;
L0——被测之量的真值。
大多数情况下,真值是无法得知的,因而绝对误差也无法得到。壹般只能应用壹种更精密的量具或仪器进行测量,所得数值称为实际值,它更接近真值,且用它代替真值计算误差。 2)相对误差指绝对误差和被测真值(或实际值)的比值,即: 式中:δ——相对误差。
相对误差不仅表示测量的绝对误差,而且能反映出测量时所达到的精度。 2、误差的来源 (1)装置误差 (2)环境误差 (3)人员误差 (4)方法误差 3、误差的分类。
(1)系统误差在同壹条件下,多次重复测试同壹量时,误差的数值和正负号有较明显的规律。
系统误差通常在测试之前就已经存在,而且在试验过程中,始终偏离壹个方向,在同壹试验中其大小和符号相同。
(2)随机误差在相同条件下,多次重复测试同壹量时,出现误差的数值和正负号没有明显的规律,它是由许多难以控制的微小因素造成的。
例如,原材料特性的正常波动,试验条件的微小变化等。
(3)过失误差明显地歪曲试验结果,如测错、读错、记错或计算错误等。
含有过失误差的测量数据是不能采用的,必须利用壹定的准则从测得的数据中剔除。 因此,在进行误差分析时,只考虑系统误差和随机误差。 三、数据的表达方法 1、表格法
表格有俩种:壹种是试验检测数据记录表,另壹种是试验检测结果表。 2、图示法
图示法的最大优点是壹目了然,即从图形中可非常直观地见出函数的变化规律,如递增性或递减性,最大值或最小值,是否具有周期性变化规律等。 3、经验公式法
和曲线对应的公式称为经验公式,在回归分析中则称之为回归方程 四、有效数字
▲在测量工作中,由于测量结果总会有误差,因此表示测量结果的位数不宜太多,也不宜太
少,太多容易使人误认为测量精度很高,太少则会损失精度。 ▲单从有效数字来考虑,在数学上23和23.00俩个数是相等的。而作为表示测量结果的数值,俩者相差是很悬殊的。用23表示的测量结果,其误差可能为±0.5;而23.00表示的测量结果,其误差可能是±0.005。
有效数字:由数字组成的壹个数,除最末壹位数字是不确切值或可疑值外,其他数字皆为可靠值或确切值,则组成该数的所有数字包括末位数字称为有效数字,除有效数字外其余数字为多余数字。
▲壹个数,有效数字占有的位数,即有效数字的个数,为该数的有效位数。
例如:00713,0.0715,7.03,7.03×102,这四个数的有效位数均为3,有效数字都是3个。 再如,测量某壹试件面积,得其有效面积A=0.0501502m2,测量的极限误差率δ=0.000005m2。则测量结果应当表示为A=(0.050150±0.000005)m2。误差的有效数字为1位,即5;而有效面积的有效数字应为5个,即50150;因2小于误差的数量级,故为多余数字。 在测量或计量中应取多少位有效数字,可根据下述准则判定:
(1)对不需要标明误差的数据,其有效位数应取到最末壹位数字为可疑数字(也称不确切或参考数字);
(2)对需要标明误差的数据,其有效位数应取到和误差同壹数量级。 五、数字修约规则 1、修约间隔
修约间隔是指确定修约保留位数的壹种方式。修约间隔的数值壹经确定,修约值即应为该数值的整数倍。
例如指定修约间隔为0.1,修约值即应在0.1的整数倍中选取,相当于将数值修约到壹位小数。又如指定修约间隔为100,修约值即应在100的整数倍中选取,相当于将数值修约到“百”数位。
2、数值修约进舍规则
(1)拟舍弃数字的最左壹位数字小于5时,则舍去,即保留的各位数字不变。 例l:将13.2476修约到壹位小数,得13.2。 例2:将13.2476修约成俩位有效位数,得13。
(2)拟舍弃数字的最左壹位数字大于5;或者是5,而且后面的数字且非全部为0时,则进1,即保留的末位数字加1。
例l:将1167修约到“百”数位,得12×102(特定时可写为1200)。 例2:将1167修约成三位有效位数,得117×10(特定时可写为1170)。 例3:将10.502修约到“个”数位,得11。
(3)拟舍弃数字的最左壹位数字为5,而后面无数字或全部为0时,若被保留的末位数字为奇数(1,3,5,7,9)则进1,为偶数(2,4,6,8,0)则舍弃。 例1:修约间隔为0.1(或10-1)。 拟修约数值修约值 2.0502.00.1500.2
例2:修约间隔为1000(或103)。 拟修约数值修约值
45004×103(特定时可写为4000) 55006×103(特定时可写为6000)
(4)负数修约时,先将它的绝对值按上述三条规定进行修约,然后在修约值前面加上负号。 例1:将下列数字修约至“十”数位。 拟修约数值修约值
-255-26×10(特定时可写为-260) -245-24×l0(特定时可写为-240)
(5)0.5单位修约时,将拟修约数值乘以2,按指定数位依进舍规则修约,所得数值再除以2。
(6)0.2单位修约时,将拟修约数值乘以5,按指定数位依进舍规则修约,所得数值再除以5。
六、有效数字的计算法则 1、加减运算
应以各数中有效数字末位数的数位最高者为准(小数即以小数部分位数最少者为准),其余数均比该数向右多保留壹位有效数字。 例如:有4个凑整后的数字相加
41.3x+3.012x+0.322x=44.6918结果取44.69 2、乘除运算
应以各数中有效数字位数最少者为准,其余数均多取壹位有效数字,所得积或商也多取壹位有效数字。
例如,在0.0122×26.52×1.06892中,因第壹个数0.0122的有效数字位数最少(3位),因此,第二、第三个数的有效数字位数取4位,所得积也取4个有效数字,由此得: 0.0122×26.52×1.069=0.3459 3、平方或开方运算
其结果可比原数多保留壹位有效数字。 例如:5852=3.422×105 4、对数运算
所取对数位数应和真数有效数字位数相等。 5、查角度的三角函数
所用函数值的位数通常随角度误差的减小而增多。
▲在所有计算式中,常数π,e的数值等的有效数字位数,可认为无限制,需要几位就取几位。
▲表示精度时,壹般取壹位有效数字,最多取俩位有效数字。 七、可疑数据的取舍方法
在壹组条件完全相同的重复试验中,个别的测量值可能会出现异常。如测量值过大或过小,这些过大或过小的测量数据是不正常的,或称为可疑的。对于这些可疑数据应该用数理统计的方法判别其真伪,且决定取舍。常用可疑数据的取舍方法有拉依达法、肖维纳特法、格拉布斯法等。 1、拉依达法
当试验次数较多时,可简单地用3倍标准偏差(3S)作为确定可疑数据取舍的标准。当某壹测量数据(xi)和其测量结果的算术平均值之差大于3倍标准偏差时,用公式表示为: 则该测量数据应舍弃。
这是美国混凝土标准中所采用的方法,由于该方法是以3倍标准偏差作为判别标准,所以亦称3倍标准偏差法,简称3S法。
例1.3-2试验室内进行同配比的混凝土强度试验,其试验结果为(n=10):23.0、24.5、26.0、25.0、24.8、27.0、25.5、31.0、25.4、25.8MPa,试用3S法决定其取舍。
解:分析上述10个测量数据,xmin=23.0MPa和xmax=31.0MPa最可疑。故应首先判别xmin和xmax。
经计算:=25.8MPa,S=2.10MPa
由于
故上述测量数据均不能舍弃。
拉依达法简单方便,不需查表,但要求较宽,当试验检测次数较多或要求不高时能够应用当试验检测次数较少时(如n<10)在壹组测量值中即使混有异常值,也无法舍弃。 2、肖维纳特法
进行n次试验,其测量值服从正态分布,以概率,l/(2n)设定壹判别范围(-kn.S,kn.S),当偏差(测量值xi和其算术平均值之差)超出该范围时,就意味着该测量值xi是可疑的,应予舍弃。判别范围由下式确定:
式中:kn——肖维纳特系数,和试验次数n有关,可由正态分布系数表查得,见表1.3.1 肖维纳特法可疑数据舍弃的标准为:
例1.3-3试验结果同例8-1,试用肖维纳特法进行判别。
解:查表8-1,当n=10时,kn=1.96。对于测量值31.0,则有:
说明测量数据31.0是异常的,应予舍弃。这壹结论和用拉依达法的结果是不壹致的。 3、格拉布斯法
格拉布斯法假定测量结果服从正态分布,根据顺序统计量来确定可疑数据的取舍。 进行n次重复试验,试验结果为x1、x2、…、xi…、xn、而且xi服从正态分布。
为了检验xi(i=1,2,…,n)中是否有可疑值,可将xi按其值由小到大顺序重新排列,得:x(1)≤x(2)≤……≤x(n)
根据顺序统计原则,给出标准化顺序统计量g: 当最小值x(1)可疑时,则: 当最大值x(n)可疑时,则:
根据格拉布斯统计量的分布,在指定的显著性水平α(壹般α=0.05)下,求得判别可疑值的临界值go(α、n),格拉布斯法的判别标准为: g≥g0(α、n)
时测量值x(i)是异常的,应予舍去。其中g0(α、n)值列于表1.3.2。
利用格拉布斯法每次只能舍弃壹个可疑值,若有俩个之上的可疑数据,应该壹个壹个数据地舍弃,舍弃第壹个数据后,试验次数由n变为n-1,以此为基础再判别第二个可疑数据。 例1.3-4试用格拉布斯法判别例1.3-2测量数据的真伪。 1.3抽样检验基础
壹、统计数据的特征量 1、算术平均值
算术平均值是表示壹组数据集中位置最有用的统计特征量,经常用样本的算术平均值来代表总体的平均水平。总体的算术平均值用μ表示,样本的算术平均值则用表示。如果n个样本数据为x1、x2、…、xn,那么,样本的算术平均值为: 2、中位数
在壹组数据x1、x2、…、xn中,按其大小次序排序,以排在正中间的壹个数表示总体的平均水平,称之为中位数,或称中值,用表示。n为奇数时,正中间的数只有壹个;n为偶数时,正中间的数有俩个,则取这俩个数的平均值作为中位数,即: 3、极差
在壹组数据中最大值和最小值之差,称为极差,记作R: R=xmax-xmin 4、标准偏差
标准偏差有时也称标准离差、标准差或称均方差,它是衡量样本数据波动性(离散程度)的指标。在质量检验中,总体的标准偏差σ壹般不易求得。样本的标准偏差S按下式计算:
5、变异系数
标准偏差是反映样本数据的绝对波动状况,当测量较大的量值时,绝对误差壹般较大;而测量较小的量值时,绝对误差壹般较小,因此,用相对波动的大小,即变异系数更能反映样本数据的波动性。
变异系数用Cv表示,是标准偏差S和算术平均值的比值,即: 二、路基路面现场随机取样方法
▲应用随机数表确定现场取样位置时,应事先准备好编号从1-28共28块硬纸片,且将其装入布袋中。下面分测定区间或测定断面和测点位置俩种情况加以讨论。 1、测定区间或断面确定方法
(1)路段确定,根据路基路面施工或验收、质量评定方法等有关规范决定需检测的路段。它能够是壹个作业段、壹天完成的路段或路线全程,在路基路面工程检查验收时,通常以1km为壹个检测路段,此时,检测路段的确定也应按本方法的步骤进行。
(2)将确定的测试路段划分为壹定长度的区间或按桩号间距(壹般为20m)划分若干个断面,且按1、2、…、n进行编号,其中T为总的区间数或断面数。
(3)从布袋中随机摸出壹块硬纸片,硬纸片上的号数即为随机数表中的栏号,从1~28栏中选出该栏号的壹栏。
(4)按照测定区间数、断面数的频度要求(总的取样数为n,当n>30时应分次进行),依次找出和A列中01、02、…、n对应的B列中的值,共n对对应的A、B值。
(5)将n个B值和总的区间数或断面数T相乘,四舍五入成整数,即得到n个断面的编号。 例8-12按照有关规范规定,拟从K36+000~K37+000的1km检测路段中选择20个断面测定路面宽度、高程、横坡等外形尺寸,断面决定方法如下:
(1)1km总长的断面数T=1000/20=50个,编号1,2,…,50。
(2)从布袋中摸出壹块硬纸片,其编号为14,即使用随机数表的第14栏。
(3)从第14栏A列中挑出小于20所对应的B列数值,将B和T相乘,四舍五入得到20个编号,且得到20个断面的桩号,如表8-6所示。 2、测点位置确定方法
(1)从布袋中任意取出壹块硬纸片,纸片上的号数即为随机数表中的栏号。从1~28栏中选出该栏号的壹栏。
(2)按照测点数的频度要求(总的取样数为n)依次找出栏号的取样位置数,每个栏号均有A、B、C三列。根据检验数量n(当n>30时应分次进行),在所选定栏号的A列找出等于所需取样位置数的全部数,如01、02、…、n。
(3)确定取样位置的纵向距离,找出和A列中相对应的B列中的数值,以此数乘以检测区间的总长度,且加上该段的起点桩号,即可得出取样位置距该段起点的距离或桩号。
(4)确定取样位置的横向距离,找出和A列中相对应的C列中的数值,以此数乘以路基路面的宽度,再减去宽度的壹半,即得出取样位置离路中心线的距离。如差值是正值(+),表示在中心线的右侧;如差值是负值(-),表示在中心线的左侧。
例1.4-6按照有关规范规定,检查验收时拟在K36+000~K37+000的1km检测路段中选择6个测点进行钻孔取样检验压实度、沥青用量和矿料级配等,钻孔位置决定方法如下: (1)选定的随机数栏为栏号3。
(2)栏号3中从上至下小于6的数依次为:01、06、03、位、04及05。
(3)随机数表栏号3的B列中和这6个数相应的数为0.175、0.310、0.494、0.699、0.838、及0.977。
(4)取样路段长度1000m,计算得出6个乘积(取样位置和该段起点的距离)分别为175m、 310m、494m、699m、838m、977m。
(5)随机数表栏号3的C列中和A列数值相应的数为0.647、0.043、0.929、0.073、0.166及0.494 (6)路面宽度为10m,计算得6个乘积分别是6.47m、0.63m、9.29m、0.73m、1.66m及4.94m。因此,6个取样的横向位置分别是右1.47m、左4.37m、右4.29m、左4.27m、左3.34m及左0.06m。
上述计算结果可采用表8-7的方式表示。 4、课堂总结
有效数字的基本概念,数字修约的基本规则计算规则,可疑数据取舍的三种基本方法等。
因篇幅问题不能全部显示,请点此查看更多更全内容