CriticalIndexofWolffAlgorithm
SEMRAGUND¨UC¨¸,MEHMETDILAVER˙,MERALAYDIN†andY˙IG˘IT˙GUND¨UC
¨¸HacettepeUniversity,PhysicsDepartment,
06532Beytepe,Ankara,Turkey
Abstract
Inthisworkwehavestudiedthedynamicscalingbehavioroftwoscalingfunctionsandwehaveshownthatscalingfunctionsobeythedynamicfinitesizescalingrules.Dynamicfinitesizescalingofscalingfunctionsopenspossibilitiesforawiderangeofapplications.Asanapplicationwehavecalculatedthedynamiccriticalexponent(z)ofWolff’sclusteralgorithmfor2-,3-and4-dimensionalIsingmodels.Configurationswithvanishinginitialmagnetizationarechoseninordertoavoidcomplicationsduetoinitialmagnetization.TheobserveddynamicfinitesizescalingbehaviorduringearlystagesoftheMonteCarlosimulationyieldszforWolff’sclusteralgorithmfor2-,3-and4-dimensionalIsingmodelswithvanishingvalueswhichareconsistentwiththevaluesobtainedfromtheautocorrela-tions.Especially,thevanishingdynamiccriticalexponentweobtainedford=3impliesthattheWolffalgorithmismoreefficientineliminatingcriticalslowingdowninMonteCarlosimulationsthanpreviouslyreported.
1
Keywords:Isingmodel,scalingfunctions,dynamicscaling,timeevolutionofthemagne-tizationandthescalingfunctions,dynamiccriticalexponent.
2
1Introduction
Finitesizescalinganduniversalityargumentshavebeenusedtostudythecriticalparame-tersofspinsystemsovertwodecades[1].Jansen,SchaubandSchmittmann[2]showedthatforadynamicrelaxationprocess,inwhichasystemisevolvingaccordingtoadynamicsofModelA[3]andisquenchedfromaveryhightemperaturetothecriticaltemperature,auniversaldynamicscalingbehaviorwithintheshort-timeregimeexists[4,5,6].TheexistenceoffinitesizescalingevenintheearlystagesoftheMonteCarlosimulationhasbeentestedforvariousspinsystems[5,6,7,8,9,10,11,12],thedynamiccriticalbehavioriswell-studiedandithasbeenshownthatthedynamicfinitesizescalingrelationholdsforthemagnetizationandforthemomentsofthemagnetization.Forthekthmomentofthemagnetizationofaspinsystem,dynamicfinitesizescalingrelationcanbewrittenas[2]
M(k)(t,ǫ,m0,L)=L(−kβ/ν)M(k)(t/τ,ǫL1/ν,m0Lx0)
(1)
whereListhespatialsizeofthesystem,βandνarethewell-knowncriticalexponents,tisthesimulationtime,ǫ=(T−Tc)/Tcisthereducedtemperatureandx0isanindependentexponentwhichistheanomalousdimensionoftheinitialmagnetization(m0).InEq.(1)τistheautocorrelationtime,τ∼Lzandzisthedynamiccriticalexponent.
TherelationgiveninEq.(1)canbeusedtostudytheknowncriticalexponentsaswellasexponentszandx0.Momentsofthemagnetizationhavetheirownanomalousdimensions(kβ/ν)Andusingthesequantities(inordertoobtaindynamicexponentszandx0)one
3
mayexpectsomeambiguitiesduetocorrectiontoscalinganderrorsondeterminingtheanomalousdimensionofthegiventhermodynamicquantity.Theambiguitiesduetotheanomalousdimensionofthethermodynamicquantitycanbeavoidedifoneconsidersquan-titieswhicharethemselvesscalingfunctions.Moreover,scalingfunctionsareextremelypowerfultoidentifytheorderofthephasetransition,aswellaslocatingthetransitionpointofstatisticalmechanicalsystemsonfinitelattices.
Inthisworkweproposethatthedynamicfinitesizescalingrelationalsoholdsforthescalingfunctionsandthescalingrelationcanbewrittensimilarlytothemomentsofthemagnetization,
O(t,ǫ,m0,L)=O(k)(t/τ,ǫL1/ν,m0Lx0).
(2)
OuraimistostudydynamicfinitesizescalingbehaviorofthescalingfunctionsbyusingEq.(2).
Inourcalculationstwodifferentscalingfunctionsareused.ThefirstsuchquantityisBinder’scumulant[13,14,15].Binder’scumulantiswidelyusedinordertoobtainthecriticalparametersaswellastodeterminethetypeofthephasetransition.Thisquantityinvolvestheratioofthemomentsofthemagnetizationorenergy.InthisworkwehaveusedthedefinitionofBinder’scumulantwhichinvolvestheratioofthemomentsofthemagnetization.Simplestsuchquantitycanbegivenas
4
B=
n .(4) Heretheaveragesarecalculatedovertheconfigurationsobtainedateachiteration.InthisworkweuseBinder’scumulantforn=2byusingthetherelation B2(t)= F= (6) whereSiisthesumofthespinsintheithsurface.SimilartothecalculationsofBinder’scumulant,iteration-dependentcalculationofFrequirestheconfigurationaverageswhichareobtainedforeachiterationyieldingaMonteCarlotimedependentexpression, F(t)= (7) F(t)canbeusedincalculatingthedynamicfinitesizescalingrelationgiveninEq.(2). InWolff‘salgorithm[22],onlyspinsbelongingtoacertainclusteraroundtheseedspinareconsideredandupdatedateachMonteCarlostep.Inequilibrium,thedynamiccriticalexponentoftheWolff’salgorithmcannotbeobtaineddirectlyfromtheobservedauto-correlationtimes(τW),insteadtheautocorrelationtime(τW)isgovernedbytheaveragesize( ′ τW=τW ′ smallpower[27].Forthe3-dimensionalcase,Tamayoetal[28]calculatedthedynamiccriticalexponentasz∼0.44(10).Wolffcalculatedasmallervalueofz=0.28(2)[25]usingenergyautocorrelations.In4-dimensions,Tamayoetal[28]obtainedzwithavanishingvalue.Thisresultisalsoconsistentwiththemean-fieldsolutionfortheIsingmodelinfourandhigherdimensions.Inarecentpublicationithasbeenshownthatvariousalternativeclusteralgorithmspossessimilardynamicbehavior[29] TheefficiencyoftheWolff‘salgorithmisdirectlyrelatedtothesizeoftheupdatedclusters,hencetheefficiencyincreasesduringthequenchingprocess,asthenumberofiterationsincreases.Boththeaverageclustersizeandsusceptibilityhavethesameanomalousdi-mension,henceinobtainingτfromtheobservedbehaviorofthedynamicvariable,onecanreplace 2SimulationsandResults WehavestudieddynamicscalingforscalingfunctionsB2(t)andF(t)for2-,3-and4-dimensionalIsingmodelsevolvingintimebyusingWolff’salgorithm.Wehavepreparedlatticeswithvanishinginitialmagnetizationandtotalrandominitialconfigurationsarequenchedatthecorrespondinginfinitelatticecriticaltemperature.WehaveusedthelatticesL=256,384,512,640,L=32,48,64,80andL=16,20,24for2-,3-and4-dimensionalIsingmodels,respectively.Foreachlatticesize,independentinitialconfigu-rationsarecreated.Thenumberofinitialconfigurationsvariesdependingonthelattice 7 size.Onaverage,tenbinsofonethousandruns,twentybinsoftwentythousandrunsandtenbinsoftenthousandrunshavebeenperformedfor2-3-,and4-dimensionalIsingmodels,respectively.Errorsarecalculatedfromtheaveragevaluesforeachiterationobtainedindifferentbins. Inthedynamicfinitesizescaling,forthealgorithmsinwhichallspinsarecheckedforupdatingtheMonteCarlotime,tscalesast/Lz.InWolff’salgorithm,oneclusterisupdatedateachiteration,hencethereisaneedtousetheaveragenumberofupdatedspinsateachiteration.Ifthetimeisnotscaledbytheaverageclustersize,usingonlyLzasafactorshiftsthecurvestowardseachotherandcurvescrossatsomepoint,butscalingcannotbeobserved.Inordertoseeagoodscaling,thereisaneedtouseafactorwhichistheaverageclustersize( z=z′−(2YH−d) whichisobtainedfromtherelation (9) τ=τ′ wherez′andτ′arethemeasuredvaluesofthedynamiccriticalexponentandtheau-tocorrelationtime.Inthesecalculations,YHistakenasYH= 15 YH=2.4808[30,31],YH=3(mean-fieldsolution)forthe2-,3-and4-dimensionalmod-els,respectively.Since ′ InFigure1wehavepresentedBinder’scumulant(B2(t))beforeandafterthedynamicfinitesizescalingfor2-dimensionalIsingmodelforthelatticesizesconsidered.Figure1a)showsthetimeevolutionofB2(t)duringtherelaxationofthesystem.Duringtherelaxationprocessthecorrelationlengthtendstogrowuntilitreachesthelatticesize.Whenthecorrelationlengthapproachesthelatticesize,Binder’scumulantexhibitsanabruptchangeandfinallyitsettlestoanew,longcorrelationlengthvalue.Thepositionofthisabruptchangealongtimeaxisdependsonthelinearsize(L)ofthelattice.Buttheinitialandthefinalvaluesareexactlythesameforalllatticesizes.InFigure1b)thescalingofBinder’scumulant(B2(t))canbeseen.Asitisseenfromthisfigure,B2(t)scaleswithtimeast ′ Figure2showsthesurfacerenormalizationfunctionF(t)forthe2−dimensionalIsingmodelforthesamelatticesizesgiveninFigure1.Figure2a)showsthesimulationdataandFigure2b)showsthescalingbyuseof 9 positionsoftheabruptchangesforbothF(t)andB2(t)arethesameforeachlatticesize.AsinthecaseofB2(t)giveninFigure1,agoodscalingisobservedforthesamevalueofz′=1.725±0.03. Figures3and4showthesimulationdataandthedynamicscalingforB2(t)andF(t)for3-dimensionalIsingmodel,respectively.Inbothfiguresa)showsthetimeevolutionofthescalingfunctionsandb)showsthefunctionsafterdynamicscaling.Scalinggivesz′=1.95±0.05forbothB2(t)andF(t)forthe3-dimensionalIsingmodel.Similarly,figures5and6showthesimulationdataandthedynamicscalingforB2(t)andF(t)for4-dimensionalIsingmodel,respectively.ForthismodelscalingofdataforB2(t)andF(t)resultsinz′=2.0±0.2andz′=2.1±0.2,respectively.InallthesefiguressimulationdataforfunctionsB2(t)andF(t)showthesamebehaviorandscalingisverygood.Theerrorsinthevaluesofz′areobtainedfromthelargestfluctuationsinthesimulationdataforB2(t)andF(t).ThevaluesofthedynamiccriticalexponentzarecalculatedusingEq.(9)for2-,3-and4-dimensionalIsingmodelsandthesevaluesaregiveninTable1.Theliteraturevaluesarealsogivenforcomparison. 3Conclusion Wolff’salgorithmisoneofthemostdifficultalgorithmstocalculatethedynamiccriti-calexponent.Simplythedifficultyarisesfromthecomparisonbetweenthenumberofupdatedspinsandthetotalnumberofspins.Ateachiterationonlyasingleclusterisupdated.Intheliterature,for2-,3-and4-dimensions,smalldynamiccriticalexponents 10 areobtained[22,23,24,25,26,27,28],butfurtherstudiesofthedatasuggestthatforallthreedimensionsthedynamiccriticalexponentoftheIsingmodelcanbeconsideredaszero.Themeasurementofthedynamiccriticalexponentinthermalequilibriumisex-tremelydifficult,sincethecorrelationlengtharoundthephasetransitionpointisaslargeasthesizeofthelattice.Indynamicfinitesizescaling,sincethecorrelationlengthremainssmallerthanthelatticesize,itisexpectedthatstatisticallyindependentconfigurationsleadtobetterstatisticssincetherearenofinitesizeeffects. InthisworkwehaveconsideredthedynamicscalingbehaviorofBinder’scumulant(B2(t))andtherenormalizationfunction(F(t))for2-,3-and4-dimensionalIsingmodels.Wehaveobservedthatthesescalingfunctionscanbeusedtoidentifythecriticalpointandthecriticalexponentsduringtheinitialstagesofthethermalization.Inourcalculations,wehaveobservedthatourresultsareconsistentwithvanishingdynamiccriticalexponent.Despitethefactthatobtaininggoodstatisticsisextremelytimeconsumingforlargelattices,finitesizeeffectsdonotplayanyroleinobtainingtheresults.Onecanseefromtheresultsofdynamicscalingthatscalingisverygoodandtheerrorsareverysmall,hencethismethodisagoodcandidatetocalculatethedynamiccriticalexponentforanyspinmodelandforanyalgorithm.Themoststrikingresultofourcalculationsisthatthedynamiccriticalexponentfor3-dimensionalIsingmodelisobtainedasz=0.02±0.09,insteadofpreviouslyreportedrangeofvaluesz=0.28−0.44[28,25].ThisisaclearindicationthattheefficiencyoftheWolff’salgorithmisbetterthanpreviouslythought,especiallyineliminatingcriticalslowingdownofMonteCarlosimulations.Thismeans 11 thatusingthisalgorithm,verylargelatticesatcriticalitycanbeconsidered,withoutunusuallylargestatisticalerrorsbuildingup. Acknowledgements We greatfully acknowledge Hacettepe University Research (Projectno:0101602019)andHewlett-Packard’sPhilanthropyProgramme. 12 Fund References [1]M.N.Barber,in:PhaseTransitionandCriticalPhenomena,eds.C.DombandJ.L. Lebowitz(Academic,NewYork,1983),Vol.8,p.146. [2]H.K.Janssen,B.SchaubandB.Schmittmann,Z.Phys.B73,539(1989).[3]P.C.HohenbergandB.I.Halperin,Rev.Mod.Phys.49,435(1977).[4]F.G.WangandC.K.Hu,Phys.Rev.E56,2310(1997).[5]B.Zheng,Int.J.Mod.Phys.B12,1419(1998).[6]B.Zheng,PhysicaA283,80(2000). [7]A.Jaster,J.Mainville,L.Sch¨ulkeandB.Zheng,J.Phys.A:Math.Gen.32,1395 (1999). [8]H.J.LuoandB.Zheng,Mod.Phys.Lett.B11,615(1997). [9]H.P.Ying,B.Zheng,Y.YuandS.Trimper,Phys.Rev.E63,R35101(2001).¨guz,Y.G¨[10]B.E.Ozo˘und¨uc¸andM.Aydın,IntJ.Mod.Phys.C11,553(2000).[11]L.Sch¨ulkeandB.Zheng,Phys.Rev.E62,7482(2000). [12]M.Dilaver,S.G¨und¨uc¸,M.AydınandY.G¨und¨uc¸,Int.J.Mod.Phys.C14,945 (2003). [13]K.Binder,Phys.Rev.Lett47,639(1981). [14]K.BinderandD.P.Landau,Phys.Rev.B30,1477(1984). 13 [15]M.S.S.Challa,D.P.LandauandK.Binder,Phys.Rev.B34,1841(1986).[16]P.M.C.deOliveira,Europhys.Lett.20,(1992)621.[17]P.M.C.deOliveira,PhysicaA205,(1994)101. [18]J.M.deF.Neto,S.M.deOliveira,andP.M.C.deOliveira,PhysicaA206,(1994) 463. [19]P.M.C.deOliveira,S.M.deOliveira,C.E.Cordeiro,andD.Stauffer,J.Stat.Phys. 80,(1995)1433. [20]S.Demirt¨urk,N.Sefero˘gu,M.AydınandY.G¨und¨uc¸,InternationalJournalofModern PhysicsC12,(2001)403. [21]S.Demirt¨urk,Y.G¨und¨uc¸,InternationalJournalofModernPhysicsC12,(2001)1361.[22]U.Wolff,Phys.Rev.Lett.62,361(1989). [23]R.H.SwendsenandJ.S.Wang,Phys.Rev.Lett.58,86(1987).[24]N.ItoandG.A.Koring,Int.J.Mod.Phys.C1,91(1990).[25]U.Wolff,Phys.Lett.B228,379(1989). [26]D.W.HeermanandA.N.Burkitt,PhysicaA162,210(1990).[27]C.F.BaillieandP.D.Coddington,Phys.Rev.B43,10617(1991).[28]P.Tamayo,R.C.BrowerandW.Klein,J.Stat.Phys.58,1083(1990).[29]J.-S.Wang,O.KozanandR.H.Swendsen,Phys.Rev.E66,057101(2002). 14 [30]H.W.J.Bl¨ote,E.LuijtenandJ.R.Heringa,J.Phys.A:Math.Gen.28,6289(1995).[31]A.L.TalapovandH.W.Bl¨ote,J.Phys.A:Math.Gen.29,5727(1996). 15 TableCaptions Table1. Thevaluesofcalculateddynamiccriticalexponents(z)(usingEq.(9))for2-,3-and4-dimensionalIsingmodels.FirsttwocoulumnsarethevaluesobtainedfromscalingfunctionsB2(t)andF(t),respectivelyandthethirdcolumnincludestheliteraturevalues. FigureCaptions Figure1a)Bindercumulantdata(B2(t))for2-dimensionalIsingModelforlinearlatticesizesL=256,384,512,640asafunctionofsimulationtimet,b)scalingofB2(t)datagivenina)using Figure2a)Simulationdatafortherenormalizationfunction(F(t))asafunctionofsimu-lationtimetfor2-dimensionalIsingmodelforlinearlatticesizesL=256,384,512,640,b)scalingofF(t)datagivenina)using Figure3.SimulationdataforB2(t)asafunctionofsimulationtimetfor3-dimensionalIsingmodelforlinearlatticesizesL=32,48,64,80,b)scalingofB2(t)datagivenina)using Figure4.SimulationdataforF(t)asafunctionofsimulationtimetfor3-dimensionalIsingmodelforlinearlatticesizesL=32,48,64,80,b)scalingofF(t)datagivenina) 16 using Figure5.SimulationdataforB2(t)asafunctionofsimulationtimetfor4-dimensionalIsingmodelforlinearlatticesizesL=16,20,24,b)scalingofB2(t)datagivenina)using Figure6.SimulationdataforF(t)asafunctionofsimulationtimetfor4-dimensionalIsingmodelforlinearlatticesizesL=16,20,24,b)scalingofF(t)datagivenina)using 17 dz(F)20.02±0.0530.02±0.094 −0.13±0.19 2d=21.8L=256L=384L=512L=640B2(t)1.61.41.21010000t2000030000(a)2d=21.8B2(t)1.61.41.2100.05 t < S > / L2z0.1(b) Figure1: 19 d=20.8L=256L=384L=512L=6400.6 F(t)0.40.20010000 t2000030000(a)d=20.80.6F(t)0.40.2000.020.040.06 t < S > / L2z0.080.10.12(b) Figure2: 20 2d=3L=32L=48L=64L=801.8B2(t)1.61.41.2010000t2000030000(a) d=31.8 B2(t)1.61.41.200.05t < S > / L 2z0.1(b) Figure3: 21 0.8L=320.6L=48d=3L=64L=80F(t)0.40.2001000020000t3000040000(a)0.8d=30.6 F(t)0.40.2000.05 t < S > / L2z0.1(b) Figure4: 22 d=41.8L=20L=16L=24B2(t)1.61.405000t1000015000(a) d=4B2(t)1.61.400.05 t < S > / L2z0.1(b) Figure5: 23 0.8d=4L=160.6L=20L=24F(t)0.40.200500010000t1500020000(a)0.8d=40.6 F(t)0.40.2000.05 t < S > / L2z0.1(b) Figure6: 24 因篇幅问题不能全部显示,请点此查看更多更全内容