您的当前位置:首页实验五 异方差模型的检验和处理-学生实验报告

实验五 异方差模型的检验和处理-学生实验报告

2023-10-02 来源:小侦探旅游网


实 验 报 告

课程名称: 计量经济学 实验项目: 实验五 异方差模型的 检验和处理 实验类型:综合性□ 设计性□ 验证性 专业班别: 姓 名: 学 号: 实验课室: 指导教师: 石立 实验日期: 2014.5.30

广东商学院华商学院教务处 制

一、实验项目训练方案 小组合作:是□ 否 实验目的: 掌握异方差模型的检验和处理方法 实验场地及仪器、设备和材料 实验室:普通配置的计算机,Eviews软件及常用办公软件。 实验训练内容(包括实验原理和操作步骤): 小组成员:无 【实验原理】 异方差的检验:图形检验法、Goldfeld-Quanadt检验法、White检验法、Glejser检验法; 异方差的处理:模型变换法、加权最小二乘法(WLS)。 【实验步骤】 本实验考虑三个模型: 【1】广东省财政支出CZ对财政收入CS的回归模型;(数据见附表1:附表1-广东省数据) 【2】广东省固定资产折旧ZJ对国内生产总值GDPS和时间T的二元回归模型;(数据见附表1:附表1-广东省数据) 【3】广东省各市城镇居民消费支出Y对人均收入X的回归模型。(数据见附表2:附表2-广东省2005年数据) (一)异方差的检验 1.图形检验法 分别用相关分析图和残差散点图检验模型【1】、模型【2】和模型【3】是否存在异方差。 注:①相关分析图是作因变量对自变量的散点图(亦可作模型残差对自变量的散点图); ②残差散点图是作残差的平方对自变量的散点图。 ③模型【2】中作图取自变量为GDPS来作图。 模型【1】 相关分析图 残差散点图 2,000 E220,0001,60016,0001,200 800400CS12,0008,000 05001,000CZ1,5002,0002,5004,0000 005001,000CS1,5002,000模型【2】 4,000相关分析图 残差散点图 1,200,0001,000,000 TZJ3,5003,0002,500E2800,0002,0001,500600,000400,0001,000500005,00010,00015,00020,00025,000200,000005,00010,00015,00020,00025,000GDPSGDPS模型【3】 相关分析图 残差散点图 X32,00028,00024,00012,000,00010,000,0008,000,00020,00016,00012,0008,0004,0004,000E26,000,0004,000,0002,000,0008,00012,000Y16,00020,00024,00005,00010,00015,000X20,00025,00030,000【思考】①相关分析图和残差散点图的不同点是什么? ②*在模型【2】中,自变量有两个,有无其他处理方法?尝试做出来。 (请对得到的图表进行处理,以上在一页内) 2.Goldfeld-Quanadt检验法 用Goldfeld-Quanadt检验法检验模型【3】是否存在异方差。 注:Goldfeld-Quanadt检验法的步骤为:①排序:②删除观察值中间的约1/4的,并将剩下的数据分为两个部分。③构造F统计量:分别对上述两个部分的观察值求回归模型,由此得到的两个部分的残差平方为④算统计量Fee(21i22ie21i和e。e22i21i为较大的残差平方和,e22i为较小的残差平方和。*~F((nc)(nc)k,k)。⑤判断:给定显著性水平0.05,查F分22布表得临界值F(nc)2(nc)k,k)2()。如果F*F(nc)(2k,(nc)k)2(),则认为模型中的随机误差存在异方差。(详见课本135页) 将实验中重要的结果摘录下来,附在本页。 将样本进行排序后,区间定义为1~7,然后用OLS方法求得如下结果: 将样本进行排序后,区间定义为12~18,然后用OLS方法求得如下结果: 2有上图可知,e12i=17472943,e2i=1757380 2F=e12i/e2i=17472943/1757380=2.90586 在=0.05下,上式中分子、分母的自由度均为5,查F分布表得临界值F0.05(5,5)=5.05,因为F=2.90586< F0.05(5,5)=5.05,所以接受原假设,说明模型不存在异方差。 (请对得到的图表进行处理,以上在一页内) 3.White检验法 分别用White检验法检验模型【1】、模型【2】和模型【3】是否存在异方差。 Eviews操作:先做模型,选view/Residual Tests/White Heteroskedasticity (no cross terms/cross terms)。摘录主要结果附在本页内。 模型【1】 Heteroskedasticity Test: White F-statistic 4.940866 Prob. F(2,25) 7.932189 Prob. Chi-Square(2) 14.57723 Prob. Chi-Square(2) Coefficient -879.8513 12.93720 -0.006620 Std. Error 1125.376 4.651328 0.002964 t-Statistic -0.781829 2.781398 -2.233561 0.0156 0.0189 0.0007 Prob. 0.4417 0.0101 0.0347 1940.891 4080.739 19.31077 19.45351 19.35441 2.144291 Obs*R-squared Scaled explained SS Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 05/30/14 Time: 11:48 Sample: 1978 2005 Included observations: 28 C CS CS^2 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) 0.283292 Mean dependent var 0.225956 S.D. dependent var 3590.225 Akaike info criterion 3.22E+08 Schwarz criterion -267.3508 Hannan-Quinn criter. 4.940866 Durbin-Watson stat 0.015552 模型【2】 Heteroskedasticity Test: White F-statistic 1.993171 Prob. F(5,22) 8.729438 Prob. Chi-Square(5) 14.67857 Prob. Chi-Square(5) Coefficient 1837.898 -3.395093 -9.08E-05 0.160300 -491.5614 49.08543 Std. Error 6243.701 5.407361 0.000185 0.315176 1982.891 152.9875 t-Statistic 0.294360 -0.627865 -0.489537 0.508604 -0.247901 0.320846 0.1195 0.1204 0.0118 Prob. 0.7712 0.5366 0.6293 0.6161 0.8065 0.7514 3461.910 7240.935 20.63147 20.91694 20.71874 1.971537 Obs*R-squared Scaled explained SS Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 05/30/14 Time: 11:50 Sample: 1978 2005 Included observations: 28 C GDPS GDPS^2 GDPS*T T T^2 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) 0.311766 Mean dependent var 0.155349 S.D. dependent var 6654.775 Akaike info criterion 9.74E+08 Schwarz criterion -282.8405 Hannan-Quinn criter. 1.993171 Durbin-Watson stat 0.119510 模型【3】 Heteroskedasticity Test: White F-statistic 7.670826 Prob. F(2,15) 9.101341 Prob. Chi-Square(2) 14.09286 Prob. Chi-Square(2) 0.0051 0.0106 0.0009 Obs*R-squared Scaled explained SS Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 06/22/14 Time: 10:35 Sample: 1 18 Included observations: 18 C X X^2 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Coefficient 1865425. -354.7917 0.018810 Std. Error 2810916. 388.1454 0.011686 t-Statistic 0.663636 -0.914069 1.609597 Prob. 0.5170 0.3751 0.1283 1232693. 2511199. 31.88212 32.03052 31.90258 2.010913 0.505630 Mean dependent var 0.439714 S.D. dependent var 1879689. Akaike info criterion 5.30E+13 Schwarz criterion -283.9391 Hannan-Quinn criter. 7.670826 Durbin-Watson stat 0.005074 用Glejser检验法检验模型【1】是否存在异方差。 分别用残差的绝对值对自变量的一次项CSi、二次项CSi,开根号项CSi和倒数项1CSi作回归。检验异方差是否存在,并选定异方差的最优形式。 对CS回归,结果为 Dependent Variable: ABS(RESID) Method: Least Squares Date: 06/22/14 Time: 11:01 Sample: 1978 2005 Included observations: 28 CS C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Coefficient 0.013849 6.922731 Std. Error 0.005488 3.691225 t-Statistic 2.523682 1.875456 Prob. 0.0181 0.0720 13.14854 15.90841 8.258958 8.354116 8.288049 1.172635 2 0.196762 Mean dependent var 0.165868 S.D. dependent var 14.52928 Akaike info criterion 5488.600 Schwarz criterion -113.6254 Hannan-Quinn criter. 6.368969 Durbin-Watson stat 0.018061 常数项不显著,去掉常数项再进行回归,得结果为: Dependent Variable: ABS(RESID) Method: Least Squares Date: 06/22/14 Time: 11:03 Sample: 1978 2005 Included observations: 28 CS R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat 对CS^2回归,得结果为: Dependent Variable: ABS(RESID) Method: Least Squares Date: 06/22/14 Time: 11:05 Sample: 1978 2005 Included observations: 28 CS^2 C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) 对 Dependent Variable: ABS(RESID) Method: Least Squares Date: 06/22/14 Time: 11:08 Sample: 1978 2005 Coefficient 1.94E-06 4.256263 Std. Error 1.10E-06 0.998918 t-Statistic 1.756030 4.260871 Prob. 0.0909 0.0002 5.132011 4.753345 5.949984 6.045142 5.979075 2.365101 Coefficient 0.017138 Std. Error 0.002273 t-Statistic 7.538605 Prob. 0.0000 9.940665 10.04016 7.054569 7.102148 7.069114 0.350502 Mean dependent var 0.350502 S.D. dependent var 8.091511 Akaike info criterion 1767.759 Schwarz criterion -97.76396 Hannan-Quinn criter. 1.874280 0.106027 Mean dependent var 0.071643 S.D. dependent var 4.579909 Akaike info criterion 545.3647 Schwarz criterion -81.29978 Hannan-Quinn criter. 3.083641 Durbin-Watson stat 0.090859 CSi回归,得结果为: Included observations: 28 CS^(1/2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Dependent Variable: ABS(RESID) Method: Least Squares Date: 06/22/14 Time: 11:09 Sample: 1978 2005 Included observations: 28 1/CS C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Coefficient -46.31861 1.342028 Std. Error 29.48793 0.388758 Coefficient 0.062753 Std. Error 0.016199 t-Statistic 3.873786 Prob. 0.0006 1.302296 1.838557 4.067832 4.115410 4.082377 0.022805 Mean dependent var 0.022805 S.D. dependent var 1.817472 Akaike info criterion 89.18656 Schwarz criterion -55.94964 Hannan-Quinn criter. 2.323523 对1/cs回归,得结果为: t-Statistic -1.570765 3.452090 Prob. 0.1283 0.0019 0.910752 1.495389 3.658480 3.753637 3.687570 2.137709 0.086671 Mean dependent var 0.051543 S.D. dependent var 1.456341 Akaike info criterion 55.14412 Schwarz criterion -49.21872 Hannan-Quinn criter. 2.467302 Durbin-Watson stat 0.128329 从四个回归的结果看,第二个不显著,其他三个显著,比较这三个回归,还是选择第三个,方程为 ABS(RESID)= 0.062753*CS^(1/2) 即异方差的形式为 i2i(0.062753*CS^(1/2)^2 (二)异方差的处理 1.模型【1】中CZ对CS回归异方差的处理 已知CZ对CS回归异方差的形式为:i22CSi,选取权数,使用加权最小二乘法处理异方差。 并检验处理异方差之后模型是否仍存在异方差,若仍然存在异方差,请继续处理异方差。 把W=1/CSi作为权数进行最小二乘法 Dependent Variable: CZ Method: Least Squares Date: 06/22/14 Time: 11:18 Sample: 1978 2005 Included observations: 28 Weighting series: 1/(CS^(1/2)) CS C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Coefficient 1.275677 -21.24365 Std. Error 0.019406 4.264097 t-Statistic 65.73628 -4.981980 Prob. 0.0000 0.0000 254.4606 189.1988 9.166001 9.261159 9.195092 1.550317 552.2429 653.1881 54416.57 Weighted Statistics 0.994019 Mean dependent var 0.993789 S.D. dependent var 22.86683 Akaike info criterion 13595.19 Schwarz criterion -126.3240 Hannan-Quinn criter. 4321.259 Durbin-Watson stat 0.000000 Unweighted Statistics 0.995276 Mean dependent var 0.995095 S.D. dependent var 45.74872 Sum squared resid 1.545575 回归方程为 CZ=1.275676968496212*CS-21.24365 存在异方差,改为CZ对1/CS和C回归 ,结果如下: Dependent Variable: CZ/CS Method: Least Squares Date: 06/22/14 Time: 11:51 Sample: 1978 2005 Included observations: 28 Coefficient Std. Error t-Statistic Prob. 1/CS C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) -19.82860 1.262501 2.064540 0.027218 -9.604368 46.38456 0.0000 0.0000 1.077876 0.213378 -1.659667 -1.564510 -1.630577 1.613436 0.780115 Mean dependent var 0.771658 S.D. dependent var 0.101963 Akaike info criterion 0.270307 Schwarz criterion 25.23534 Hannan-Quinn criter. 92.24388 Durbin-Watson stat 0.000000 观察其残差趋势图 不存在异方差了,其方程为 CZ/CS=-19.82860*1/CS+1.262501 变换为原方程为 CZ=-19.82860 +1.262501*CS 2.模型【2】中ZJ对GDPS和T回归异方差的处理 已知ZJ对GDPS和T回归异方差的形式为:iGDPSi,选取权数,使用加22341.61.41.2.3.2.1.0-.1-.2-.319801985Residual19901995Actual2000Fitted20051.00.80.6权最小二乘法处理异方差。 并检验处理异方差之后模型是否仍存在异方差,若仍然存在异方差,请继续处理异方差。摘录主要结果附在本页内。 把W=1/(GDPS^(3/8)作为权数进行最小二乘法。得到回归结果为: Dependent Variable: ZJ Method: Least Squares Date: 06/22/14 Time: 12:04 Sample: 1978 2005 Included observations: 28 Weighting series: 1/(GDPS^(3/8)) GDPS T R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Coefficient 0.166995 -4.353685 Std. Error 0.002565 0.881296 t-Statistic 65.10068 -4.940093 Prob. 0.0000 0.0000 418.9342 382.1762 9.682092 9.777250 9.711183 846.0661 1014.824 103202.6 Weighted Statistics 0.997009 Mean dependent var 0.996894 S.D. dependent var 29.59878 Akaike info criterion 22778.28 Schwarz criterion -133.5493 Hannan-Quinn criter. 0.668750 Unweighted Statistics 0.996289 Mean dependent var 0.996146 S.D. dependent var 63.00261 Sum squared resid 0.754208 回归方程为 ZJ=0.166995*GDPS-4.353685*T 进行同方差性变换,,然后回归实际上就是ZJ/(GDPS^(3/8))对GDPS/( GDPS^(3/8)) 和T/( GDPS^(3/8))回归,结果如下: Dependent Variable: ZJ/(GDPS^(3/8)) Method: Least Squares Date: 06/22/14 Time: 12:19 Sample: 1978 2005 Included observations: 28 GDPS/(GDPS^(3/8)) T/(GDPS^(3/8)) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Coefficient 0.166995 -4.353685 Std. Error 0.002565 0.881296 t-Statistic 65.10068 -4.940093 Prob. 0.0000 0.0000 27.59529 25.17403 4.241955 4.337112 4.271045 0.994224 Mean dependent var 0.994002 S.D. dependent var 1.949678 Akaike info criterion 98.83235 Schwarz criterion -57.38737 Hannan-Quinn criter. 0.668750 观察其残差趋势图: 可能还存在异方差,再改为ZJ/GDPS对C和T/GDPS回归,结果如下: Dependent Variable: ZJ/GDPS Method: Least Squares Date: 06/22/14 Time: 12:23 Sample: 1978 2005 Included observations: 28 T/GDPS Coefficient -3.726504 Std. Error 0.399838 t-Statistic -9.320044 Prob. 0.0000 10080606420-2-4-619801985Residual19901995Actual2000Fitted200504020C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) 0.161950 0.003461 46.79358 0.0000 0.135596 0.021590 -6.194729 -6.099572 -6.165638 0.439676 0.769633 Mean dependent var 0.760772 S.D. dependent var 0.010560 Akaike info criterion 0.002899 Schwarz criterion 88.72621 Hannan-Quinn criter. 86.86322 Durbin-Watson stat 0.000000 .18.16.14.12再观察其残差趋势图 不再存在异方差了,其方程为 ZJ/GDPS=0.161950-3.726504*T/GDPS 变换为原方程为 ZJ=0.161950*GDPS-3.726504*T .02.01.00-.01-.02-.0319801985Residual19901995Actual2000Fitted.1020053.模型【3】中消费支出Y对可支配收入X回归异方差的处理 已知Y对X回归异方差的形式为:i法处理异方差。 并检验处理异方差之后模型是否仍存在异方差,若仍然存在异方差,请继续处理异方差。摘录主要结果附在本页内。 把W=1/X^(2/3)作为权数来进行加权最小二乘法。得到回归结果为: Dependent Variable: Y Method: Least Squares Date: 06/22/14 Time: 12:31 Sample: 1 18 Included observations: 18 Weighting series: 1/X^(2/3) X R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Coefficient 0.795157 Std. Error 0.017252 t-Statistic 46.09012 Prob. 0.0000 9599.510 1867.615 16.48709 16.53656 16.49391 10906.35 5381.587 23363462 22Xi43,选取权数,使用加权最小二乘 Weighted Statistics 0.954867 Mean dependent var 0.954867 S.D. dependent var 895.7229 Akaike info criterion 13639432 Schwarz criterion -147.3838 Hannan-Quinn criter. 1.472431 Unweighted Statistics 0.952547 Mean dependent var 0.952547 S.D. dependent var 1172.315 Sum squared resid 1.419465 回归方程为 Y=0.795157*X 进行同方差性变换,然后回归实际上就是Y/(X^(2/3))对1/(X^(2/3))和X/(X^(2/3))回归,结果如下: Dependent Variable: Y/(X^(2/3)) Method: Least Squares Date: 06/22/14 Time: 12:36 Sample: 1 18 Included observations: 18 1/(X^(2/3)) X/(X^(2/3)) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Coefficient -495.5562 0.833708 Std. Error 520.4173 0.044026 t-Statistic -0.952228 18.93673 Prob. 0.3551 0.0000 18.56257 3.611408 4.046440 4.145370 4.060081 0.782313 Mean dependent var 0.768707 S.D. dependent var 1.736830 Akaike info criterion 48.26526 Schwarz criterion -34.41796 Hannan-Quinn criter. 1.317425 观察其残差趋势图 28 24 20 6 164 122 0 -2 -424681012141618 ResidualActualFitted 虽然不能准确判断,但大致存在异方差,再改为Y/(X^(1/3))对1/(X^(1/3))和X/(X^(1/3))回归结果如下: Dependent Variable: Y/(X^(1/3)) Method: Least Squares Date: 06/22/14 Time: 12:42 Sample: 1 18 Included observations: 18 1/(X^(1/3)) X/(X^(1/3)) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Coefficient -550.3539 0.838039 Std. Error 577.6243 0.043516 t-Statistic -0.952789 19.25836 Prob. 0.3549 0.0000 445.2623 151.7182 10.51537 10.61430 10.52901 0.920470 Mean dependent var 0.915499 S.D. dependent var 44.10293 Akaike info criterion 31121.10 Schwarz criterion -92.63832 Hannan-Quinn criter. 1.301899 观察其残差趋势图 800 700 600 500 400120 30080200 40 0 -40 -80 24681012141618 ResidualActualFitted 显然,有所改善,取其方程为 Y/(X^(1/3))= -550.3539*1/(X^(1/3))+ 0.838039* X/(X^(1/3)) 变换原方程为 Y= -550.3539*1+ 0.838039* X 二、实验总结与评价 实验总结(包括实验数据分析、实验结果、实验过程中出现的问题及解决方法等): 见实验步骤中。 1、 异方差性是指模型中随机误差项的方差不是常量,而且它的变化与解释变量的变动有关。 2、 产生异方差性的主要原因有:模型中略去的变量随解释变量的变化而呈规律性的变化、变量的设定问题、截面数据的使用,利用平均数作为样本数据等。 3、 存在异方差性时对模型的OLS估计仍然具有无偏性,但最小方差性不成立,从而导致参数的显著性检验失效和预测的精度降低。 4、 检验异方差性的方法有多种,常用的有图形法、Goldfeld-Qunandt检验、White检验、ARCH检验以及Glejser检验,运用这些检验方法时要注意它们的假设条件。 5、 修正异方差性的主要方法是加权最小二乘法,也可以用变量变换法和对数变换法。变量变换法与加权最小二乘法实际是等价的。 对实验的自我评价: 学会了异方差模型的检验和处理方法。 指导教师评语: 学生实验成绩评定: 指导教师签名: 日期: 年 月 日

因篇幅问题不能全部显示,请点此查看更多更全内容