您的当前位置:首页高中物理-静电场-知识点归纳

高中物理-静电场-知识点归纳

来源:小侦探旅游网


高中物理-静电场-知识点归纳

静电场

第一讲 电场力的性质

一、 电荷及电荷守恒定律

1、 自然界中只存在两种电荷,一种是正电,例如用丝

绸摩擦玻璃棒,玻璃棒带正电;另一种带负电,用毛皮摩擦橡胶棒,橡胶棒带负电。

2、 电荷间存在着相互作用的引力或斥力(同性相吸,

异性相斥)。

3、 电荷在它的周围空间形成电场,电荷间的相互作用

力就是通过电场发生的。电荷的多少叫电量。 元电荷e=1.6×10于e的整数倍。点电荷

4、 使物体带电叫做起电。使物体带电的方法有三种:

(1)摩擦起电;(2)接触带电;(3)感应起电。 5、 电荷既不能创造,也不能消灭,它只能从一个物体

转移到另一个物体,或从物体的一部分转移到另一

-19

C,所有带电体的电荷量都等

部分,在转移的过程中,电荷的总量不变。这叫做电荷守恒定律。

【重点理解】(1)摩擦起电;(2)接触带电;(3)感应起电

当两个物体互相摩擦时,一些束缚得不紧的电子往往从一个物体转移到另一个物体,于是原来电中性的物体由于得到电子而带负电,失去电子的物体带正电,这就是摩擦起电.

当一个带电体靠近导体,由于电荷间相互吸引或排斥,导体中的自由电荷便会趋向或远离带电体,使导体靠近带电体的一端带异号电荷,远离带电体的一端带同号电荷,这就是感应起电,也叫静电感应.

接触起电指让不带电的物体接触带电的物体,则不带电的物体也带上了与带电物体相同的电荷,如把带负电的橡胶棒与不带电的验电器金属球接触,验电器就带上了负电,且金属箔片会张开;带正电的物体接触不带电的物体,则是不带电物体上的电子在库仑力的作用下转移到带正电的物体上,使原来不带电的物体由于失去电子而带正电。 实质:电子的得失或转移

二、库仑定律

1、内容:在真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的平方成反比,作用力的方向在它们的连线上。

2、公式:FkQrQ,F叫库仑力或静电力,也叫电场

122力,F可以是引力,也可以是斥力,K叫静电力常量,公式中各量均取国际单位制单位时,K=9.0×10N·m/C

3、适用条件:(1)真空中;(2)点电荷。(Q1 、Q2——两个点电荷带电量的绝对值)

例1.两个完全相同的金属小球带有正、负电荷,相距一定的距离,先把它们相碰后置于原处,则它们之间的库仑力和原来相比将( ) A. 变大 B.变小 C.不变 D.以上情况均有可能

9

2

2

三、电场强度

1、电场:带电体周围存在的一种物质,由电荷激发产生,是电荷间相互作用的介质。只要电荷存在,在其周围空间就存在电场。电场具有力的性质和能的性质。 2、电场强度:

(1)定义:放入电场中某点的试探电荷所受的电场力跟它的电荷量的比值叫做该点的电场强度。它描述电场的力的性质。电场强度的意义是描述电场强弱和方向的物理量。 (2)EF,电场强度定义式,适用于一切电场;电场强q度大小取决于电场本身,与q、F无关;

EKQr2,仅适用于点电荷在真空中形成的电场。

(3)方向:规定电场中某点的场强方向跟正电荷在该点的受力方向相同。

(4)多个点电荷形成的电场的场强等于各个点电荷单独存在时在该点产生场强的矢量和。这叫做电场的叠加原理。在电场某一区域,如果各点场强的大小和方向都相同,这个区域里的电场是匀强电场。

四、电场线

1、概念:为了形象地描绘电场,人为地在电场中画出的一系列从正电荷出发到负电荷终止的曲线,使曲线上每一点的切线方向都跟该点的场强方向一致,这些曲线叫电

场线。它是人们研究电场的工具。 2、性质:

(1)电场线起自正电荷(或来自无穷远),终止于负电荷(或伸向无穷远); (2)电场线不相交;

(3)电场线的疏密反映电场的强弱,电场线越密场强越强,匀强电场的电场线是距离相等的平行直线; (4)静电场中电场线不闭合(在变化的电磁场中可以闭合);

(5)电场线是人为引进的,不是客观存在的; (6)电场线不是电荷运动的轨迹。

重难点突破

一.电场

QEK点电荷的电场:就是点电荷Q在空间距Q为r处激r2发的电场强度。方向:如果Q是正电荷,在Q与该点连线上,指向背离Q的方向;如果Q是负电荷,在Q与该点的连线上,指向Q的方向。同时要注意以下几点: (1)在距Q为r处的各点(组成一个球面)电场强度的大小相等,但方向不同,即各点场强不同。

(2)EKrQ是点电荷激发的电场强度计算公式,是由

2EFqFE是电场强度的定义,推导出来的,适用于一切电场,q

而EKrQ只适用于点电荷激发的电场。

2匀强电场:在电场中,如果各点的电场强度的大小都相同,这样的电场电匀强电场,匀强电场中电场线是间距相等且互相平行的直线。EU是场强与电势差的关系式,只d适应于匀强电场。 【总结】大小:

E=F/q 定义式 普适

E= kQ/r 计算式 适用于真空中点电荷电场 E=U/d 计算式 适用于匀强电场

电场强度与电场力的区别 电场强度E 质; ②其大小仅由电场本区 身决定; ③其方向仅由电场本别 身决定,规定其方向受力方向相同。 联系 EFq2

电场力F 力; ②其大小由放在电场中的电荷和电场共同决定; ③正电荷受力方向与电场方向相同,负电荷受力方①反映电场的力的性①仅指电荷在电场中的受与正电荷在电场中的向与电场方向相反。 FqE

例2.如图19所示,把A、B两个相同的导电小球分别用长为0.10 m的绝缘细线悬挂于OA和OB两点。用丝绸摩擦过的玻璃棒与A球接触,棒移开后将悬点OB移到OA点固定。两球接触后分开,平衡时距离为0.12 m。已测得每个小球质量是8.010kg,带电小球可视为点电荷,重力加速度g10m/s,静电力常量k9.010Nm/C,下列说法正确的是( )

A.两球所带电荷量相等

-42922B.A球所受的静电力为1.0×10-2N C.B球所带的电荷量为4

二. 电场线 1、 电场线与运动轨迹

电场线是为形象地描述电场而引入的假想曲线,规定电场线上每点的切线方向沿该点场强的方向,也是正电荷在该点受力产生加速度的方向(负电荷受力方向相反)。运动轨迹是带电粒子在电场中实际通过的路径,轨迹上每点的切线方向是该粒子在该点的速度方向。在力学的学习中我们就已经知道,物体运动速度的方向和它的加速度的方向是两回事,不一定重合。因此,电场线与运动轨迹不能混为一谈,不能认为电场线就是带电粒子在电场中运动的

6108C

D.A、B两球连续中点处的电场强度为0

轨迹。只有当电荷只受电场力,电场线是直线,且带电粒子初速度为零或初速度方向在这条直线上,运动轨迹才和电场线重合。

2、电场线的疏密与场强的关系

按照电场线画法的规定,场强大处电场线密,场强小处电场线疏。因此根据电场线的疏密就可以比较场强的大小。

例3.关于电场线的下列说法中正确的是( ) A、电场线上每一点的切线方向都跟电荷在该点的受力方向相同;

B、沿电场线方向,电场强度越来越小;

C、电场线越密的地方,同一试探电荷所受的电场力就越大;

D、在电场中,顺着电场线移动电荷,电荷受到的电场力大小恒定。

例4:某静电场中电场线如图所示,电粒子在电场中仅受电场力作用,其运动迹如图虚线所示由M运动到N,以下说法确的是( )

A、粒子必定带正电荷;

B、粒子在M点的加速度大于它在N点加速度;

带轨正

C、粒子在M点的加速度小于它在N点加速度; D、粒子在M点的动能小于它在N点的动能。

三.电场的叠加

1、所谓电场的叠加就是场强的合成,遵守平行四边形定则,分析合场强时应注意画好电场强度的平行四边形图示。

在同一空间,如果有几个静止电荷同时在空间产生电场,如何求解空间某点的场强的大小呢?根据电场强度的定义式EF和力的独立作用原理,在空间某点,多个场源q电荷在该点产生的场强,是各场源电荷单独存在时在该点所产生的场强的矢量和,这就是电场的迭加原理。

2、等量异种、等量同种点电荷的连线和中垂线上场强的变化规律。

(1)等量异种点电荷的连线之间,中点场强最小;沿中垂线从中点到无限远处,电场强度逐渐减小;

等量同种点电荷的连线之间,中点场强最小,且一定等于零。因无限远处场强为零,则沿中垂线从中点到无限远处,电场强度先增大后减小,中间某位置必有最大值。

(2)等量异种点电荷连线和中垂线上关于中点对称处的场强相同;

等量同种电荷连线和中垂线上关于中点对称处的场强大小相等、方向相反。

例7.如右图所示,ABC是等边三角形,在A点放置电荷量为Q的点电荷时,取无穷远处电势为0,点的电场强度大小和电势分别为E和。再B点放置电荷量为-Q的点电荷时,C点的电强度大小和电势分别是( )

C.2E和 D.2E和2

例8.现有两个边长不等的正方形ABCD和abcd,如图所示,且Aa、Bb、Cc、Dd间距相等。在AB、A B

a AC、CD.DB的中点分别放等量的点电荷,其中 - O AB、AC中点放的点电荷带正电,CD.BD的中点C c - d 放的点电荷带负电,取无穷远处电势为零。则 下列说法中正确的是( )

+A

C在场

B

C

A.E和0 B.E和2

b+DA.O点的电场强度和电势均为零

B.把一正点电荷沿着b→d→c的路径移动时,电场力做功为零

C.同一点电荷在a、d两点所受电场力相同 D.将一负点电荷由a点移到b点电势能减小

线分布

四.带电体的平衡

不同电场的电场

1、解决带电体在电场中处于平衡状态问题的方法与解决力学中平衡问题的方法是一样的,都是依据共点力平衡条件求解,所不同的只是在受力分析列平衡方程时,需要考虑电场力。

2、解决带电体在电场中平衡问题的一般步骤:(1)确定研究对象;(2)分析研究对象的受力情况,并画出受力图。(3)据受力图和平衡条件,列出平衡方程;(4)求解未知量。

补充练习

1.两个分别带有电荷量-Q和+3Q的相同金属小球(均可视为点电荷),固定在相距为r的两处,它们间库仑力的大

r

小为F.两小球相互接触后将其固定距离变为,则两球间2

库仑力的大小为 ( )

134

A.F B.F C.F 1243

D.12F

2.如图2所示,一质量为m、带电荷量为q的物体处于场

强按E=E0-kt(E0、k均为大于零的常数,取水平向左为正方向)变化的电场中,物体与竖直墙壁间的动摩擦因数为μ,当t=0时刻物体处于静止状态.若物体所受的最大静摩擦力等于滑动摩擦力,且电场空间和墙面均足够大,下列说法正确的是( )

A.物体开始运动后加速度先增加、后保持不变

B.物体开始运动后加速度不断增大

E0

C.经过时间t=,物体在竖直墙壁上

k的位移达最大值

μqE0-mg

D.经过时间t=,物体运动速度达最大值

μkq

第二讲 电场能的性质

一、电势、电势差 1、电势差

(1)电荷q在电场中由一点A移到另一点B时,电场力所做的功WAB跟它的电荷量q的比值,叫做A、B两点间的电势差。电场中A、B两点间的电势差在数值上等于单位正电荷从A点移动到B点过程中电场力所做的功。即:UABWABq。

(2)电势差是标量,有正负,无方向。A、B间电势差UAB=AB;B、A间电势差UBA=BA。显然UAB=-

UBA。电势差的值与零电势的选取无关。

在匀强电场中,U=Ed(U为电场中某两点间的电势差,d为这两点在场强方向上的距离)。

2、电势

(1)如果在电场中选取一个参考点(零电势点),那么电场中某点跟参考点间的电势差,就叫做该点的电势。电场中某点的电势在数值上等于单位正电荷由该点移动到参考点(零电势点)时,电场力所做的功。

(2)电势是标量,有正负,无方向。谈到电势时,就必须注明参考点(零势点)的选择。参考点的位置可以任意选取,当电荷分布在有限区域时,常取无限远处为参考点,而在实际上,常取地球为标准。一般来说,电势参考点变了,某点的电势数值也随之改变,因此电势具有相对性。同时,电势是反映电场能的性质的物理量,跟电场

强度(反映电场的力的性质)一样,是由电场本身决定的,(与检验电荷q无关)。对确定的电场中的某确定点,一旦参考点选定以后,该点的电势也就确定了。

计算时要带入正负号

(3)沿着电场线的方向电势越来越低,逆着电场线的方向,电势越来越高。

(4)电势的值与零电势的选取有关,通常取离电场无穷远处电势为零;实际应用中常取大地电势为零。

(5)当存在几个“场源”时,某处合电场的电势等于各“场源”的电场在此处的电势的代数和。

二、电势能

1、电荷在电场中具有的势能叫做电势能。严格地讲,

电势能属于电场和电荷组成的系统,习惯上称作电荷的电势能。

2、 电势能是相对量,电势能的值与参考点的选取有关。电势为零的点,电势能为零。 3、 电势能是标量,有正负,无方向。

三、电场力做功与电荷电势能的变化

电场力对电荷做正功时,电荷的电势能减少;电场力对电荷做负功时,电荷的电势能增加。电势能增加或减少的数值等于电场力做功的数值(qUab)。电荷在电场中任意

两点间移动时,它的电势能的变化量是确定的,因而移动电荷做功的值也是确定的,所以,电场力移动电荷所做的功,与移动的路径无关。这与重力做功十分相似。

注意:不论是否有其它力做功,电场力做功总等于电势能的变化。

匀强电场电场力做功W=FScosθ(θ为电场力和位移夹角)

四、等势面

电场中电势相等的面叫等势面。它具有如下特点: (1)等势面一定跟电场线垂直;

(2)电场线总是从电势较高的等势面指向电势较低的等势面;

(3)任意两等势面都不会相交;

(4)电荷在同一等势面上移动,电场力做的功为零;

(5)电场强度较大的地方,等差等势面较密; (6)等势面是人们虚拟出来形象描述电场的工具,不是客观存在的。 常见等势面:

A. 点电荷电场中的等势面 B. 等量异种点电荷电场中的等势面 C. 等量同种点电荷电场中的等势面

D. 形状不规则的带电导体附近的电场线及等势面 E.匀强电场中的等势面:垂直于电场线的一簇平面

等势面 电势大小变化规律

五、等势面与电场线的关系

1、 电场线总是与等势面垂直,且总是从电势高的等势面指向电势低的等势面。

2、 若任意相邻等势面间电势差都相等,则等势面密处场强大,等势面疏处场强小。

3、 沿等势面移动电荷,电场力不做功,沿电场线移动

电荷,电场力一定做功。

4、 电场线和等势面都是人们虚拟出来形象描述电场的工具。

5、 在电场中任意两等势面永不相交。

六、电势与电场强度的关系

1、 电势反映电场能的特性,电场强度反映电场力的特性。

2、 电势是标量,具有相对性,而电场强度是矢量,不具有相对性。两者叠加时运算法则不同。电势的正、负有大小的含义,而电场强度的正、负仅表示方向,并不表示大小。

3、 电势与电场强度的大小没有必然的联系,某点的电势为零,电场强度可不为零,反之亦然。

4、 同一试探电荷 在电场强度大处,受到的电场力大,但正电荷在电势高处,电势能才大,而负电荷在电势高处电势能反而小。 5、 场强为零的区域,电势相等。

6、 电势和电场强度都由电场本身的因素决定的,与试探电荷无关。

7、 在匀强电场中有关系式U=Ed。

七、对公式EU的理解及应用 d

公式EU反映了电场强度与电势差之间的关系,由公d式可知:电场强度的方向就是电势降低最快的方向。

公式EU的应用只适用于匀强电场,且应注意d的含d义是表示某两点沿电场线方向上的距离。由公式可得结论:在匀强电场中,两长度相等且相互平行的线段的端点间的电势差相等。U=qELcosα(α为线段与电场线的夹角,L为线段的长度);对于非匀强电场,此公式可以用来定性分析某些问题,如在非匀强电场中,各相邻等势面的电势差为一定值时,那么有E越大处,d越小,即等势面越密。

重难点突破

一、判断电势高低

1、利用电场线方向来判断,沿电场线方向电势逐渐降低。若选择无限远处电势为零,则正电荷形成的电场中,空间各点的电势皆大于零;负电荷形成的电场中空间各点电势皆小于零。

2、利用UAABWABq来判断,将WAB、q的正负代入计算,若

ABUAB>0则>;若UAB<0则<。

B

例1:如图所示,虚线方框内为一匀强电场,A、B、C

为该电场中的三个点,已知UA=12V,UB=6V,

UC=-6V,试在该方框中作出该电场的示意图(即画出几条电场线),并要求保留作图时所用的辅助线(用虚线表示)。若将一个电子从A点移到B点,电场力做多少电子伏的功?

归纳:电子从A点移到B点,电势差U=- (初减

AB末)

二、电场力做功的计算

1、由公式W=FScosθ计算,但在中学阶段,限于数学基础,要求式中F为恒力才行,所以,这种方法有局限性,此公式只适合于匀强电场中,可变形为W=qEd,式中d为电荷初末位置在电场方向上的位移。

2、由电场力做功与电势能改变关系计算,W=-Δε,对任何电场都适用。

3、用WAB=qUAB来计算。一般又有两种处理方法: (1)带正、负号运算:按照符号规则把所移动的电荷的电荷量q和移动过程的始、终两点的电势差UAB的值代入公式WAB=qUAB,根据计算所得W值的正、负来判断是电场力做功还是克服电场力做功。

其符号规则是:所移动的电荷 若为正电荷,则q取正值;若移动过程的始点电势高于终点电势,则UAB取正

AB值。

(2)用绝对值运算:公式W=qUAB中的q和UAB都取绝对值,即W=qU。

AB采用这种处理方法只能计算在电场中移动电荷所做功的大小。要想知道移动电荷过程中是电场力做功还是克服电场力做功,还需利用力学知识进行判断。判断的方法是:在始、终两点之间画出表示电场线方向、电荷所受电场力方向和电荷移动方向的矢量线E、F和S,若F与S的夹角小于90,则是电场力做正功。 4、 由动能定理计算,W

例1:如图所示,在粗糙水平面上固定一点电荷Q,在M点无初速度释放一带有恒定电荷量的小物体,小物体在Q形成的电场中运动到N点静止,则从M点运动到N的过程中

A、小物体所受电场力逐渐减小; B、小物体具有的电势能逐渐减小;

C、M点的电势一定高于N点的电势;

D、小物体电势能变化量的大小一定等于克服摩擦力做的功。

例2:如图所示,将一个电荷量为q = +3×10

-10

电0

W其1212mvmv022。

C的

点电荷从电场中的A点移到B点的过程中,克服电场力做功6×10J。已知A点的电势为A= - 4V,求B点的电势和电荷在B点的电势能。

例3:如图所示,倾角为30o的直角三角形底边长为2L,放置在竖直平面内,底边处于水平位置,斜边为光滑绝缘导轨。现在底边中点O处固定一正点电荷电荷量为Q,让一质量为m、电荷

量为q的带负电的质点,从斜面顶端A沿斜轨滑下,滑到斜边的垂足D时速度为V,加速度为a,方向沿斜面向下,问质点滑到底端C点时的速度和加速度各是多大?

例4:一带电粒子在电场中仅受静电力作用,做初速度为零的直线运动。取该直线为x轴,起始点O为坐标原点,其电势能EP与位移x的关系如右图所示。下列图象中合理的是

-9

第三讲 带电粒子在电场中的运动

一、电容器、电容

1、 电容器:两个彼此绝缘又互相靠近的导体可构成一个电容器。

2、 电容 物理意义:表示电容器容纳电荷的本领。 定义:电容器所带的电荷量Q(一个极板所带电量的绝对值)与两个极板间的电势差U的比值叫做电容器的电容。

QQ定义式:CU,对任何电容器都适用,对一个确定U的电容器,电容是一个确定的值,不会随电容器所带电量的变化而改变。

3、常见电容器有:纸质电容器,电解电容器,可变电容器,平行板电容器。电解电容器连接时应注意其“+”、“-”极。

二、平行板电容器

s平行板电容器的电容C4kd(平行板电容器的电容与两板正对面积成正比,与两板间距离成反比,与介质的介电常数成正比)。只对平行板电容器适用。

带电平行板电容器两极板间的电场可认为是匀强电场,

EUd。

三、带电粒子在电场中加速

带电粒子在电场中加速,若不计粒子的重力,则电场力对带电粒子所做的功等于带电粒子动能的增量。

1122mvmv01、在匀强电场中:W=qEd=qU=2 212122、在非匀强电场中:W=qU=2mv2mv0

四、带电粒子在电场中的偏转

带电粒子以垂直于匀强电场的场强方向进入电场后,做类平抛运动

垂直于场强方向做匀速直线运动:vxv0,xv0t。 平行于场强方向做初速度为零的匀速直线运动:

qEqU12vyat,yat,ammd2加

侧移距离:

qUl2y22mv0d20,

qUl偏转角:arctanmv。 d求运动轨迹某点的速度方法:1求出水平和竖直方向的分速度,然后矢量叠加;2运动学公式或动能定理

重难点突破

一、平行板电容器动态分析

这类问题的关键在于弄清哪些是变量,哪些是不变量,在变量中哪是自变量,哪是因变量。同时应注意理解平行板电容器演示实验中现象的实质。 一般分两种基本情况:

1、电容器两极板电势差U保持不变。即平行板电容器充电后,继续保持电容器两极板与电池两极相连接,电容器的d、s、ε变化时,将引起电容器的C、Q、U、E

的变化。

2、电容器的带电量Q保持不变。即平行板电容器充电后,切断与电源的连接,使电容器的d、s、ε变化时,将引起电容器的C、Q、U、E的变化。 进行讨论的物理依据主要是三个:

(1)平行板电容器的电容与极板距离d、正对面积S、电介质的介电常数ε间的关系:CdS (2)平行板电容器内部是匀强电场,EUd据电容器U不变还是Q不变来判断E变化) (3)电容器每个极板所带电量Q=CU。

小结:平行板电容器的常见变化

在平板电容器中插入介质(比如玻璃,陶瓷,塑料)会使介电常数ε增大(绝缘性能越好的东西介电常数越大) 1.开关接通在电源上,改变d、S、ε,特点:两板间电压U不变;改变d的值,E会变化;改变S的值,,E不会变化 2.开关从电源上断开,改变d、S、ε,特点:两板间带电量Q不变;改变d的值,E不会改变;改变S的值,E会变化

QS。 (根

例1:如图所示,A、B为平行金属板,两板相距为d,分别与电源两板相连,两板的中央各有一个小孔M和N。今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N在同一竖直线上),空气阻力忽略不计,到达N孔时速度恰好为零,然后沿原路返回。若保持两极板间的电压不变,则( )

A、把A板向上平移一小段距离,质点自P点自由下落后仍能返回。

B、把A板向下平移一小段距离,质点自P

点自由下落后将穿过N孔继续下落。

C、把B板向上平移一小段距离,质点自P点自由下落后仍然返回。

D、把B析向下平移一小段距离,质点自P点自由下落后将穿过N孔继续下落。

二、带电粒子在匀强电场中的运动

如用动能定理,则要分清有哪些力做功?正功还是负功?若电场力是变力,电场力的功必须用W=qU. 如选用能量守恒定律,则要分清有哪些形式的能变化?怎样变化?能量守恒的表达形式有:

(1)初态末态的总能量相等,即E初=E末; (2)某些形式的能量减少一定有其他形式的能增加。且ΔE减=ΔE增;

解题的基本思路是:先分析受力情况,再分析运动状态和运动过程(平衡、加速或减速,是直线运动还是曲线运动),然后选取用恰当的规律(牛顿运动定律、运动学公式;动能定理)解题。

对带电粒子进行受力分析时应注意的事项:

(1)要掌握电场力的特点。电场力的大小和方向不仅跟场强的大小和方向有关,还跟带电粒子的电性和电荷量有关。在匀强电场中,同一带电粒子所受电场力处处是恒力;在非匀强电场中,同一带电粒子在不同位置所受电场力的

大小和方向都可能不同。

(2)是否考虑重力要依据情况而定。

a、基本粒子:如电子、质子、α粒子、离子等除有说明或明确的暗示外,一般都不考虑重力(但不能忽略质量)。 b、带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确暗示外,一般都不能忽略重力。

例2:如图所示,一个质量为m、带电量为q的微粒,从A点以初速度V0竖直向上射入水平匀强电场,微粒通过B时的速度为2V0,方向水平向右,求电场强度E及A、B两点的电势差U。

静电场练习

1.如图1所示,匀强电场E的区域内,在O点放置一点电荷+Q. a、b、c、d、e、f为以O为球心的球面上的点,aecf平面与电场平行,bedf平面与电场垂直,则下列说法中正确的是 ( )

A.b、d两点的电场强度相同 B.a点的电势等于f点的电势

C.点电荷+q在球面上任意两点之间移动时,电场力一定做功

D.将点电荷+q在球面上任意两点之间移动时,从a点移动到c点电势能的变化量 一定最大

2.如图3所示,两平行金属板竖直放置,板上A、B两孔正好水平相对,板间电压为500 V.一个动能为400 eV的电子从A孔沿垂直板方向射入电场

中.经过一段时间电子离开电场,则电子离开电场时的动能大小( )

A.900 eV B.500 eV C.400 eV D.100 eV

3.平行板电容器的两极板A、B接于电源两极,两极板竖直、平行正对,一带正电小球悬挂在电容器内部,闭合电键S,电容器充电,悬线偏离竖直方向的夹角为θ,如图4所示,则下列说法正确的是 ( )

A.保持电键S闭合,带正电的A板向B板靠近,则θ减小

B.保持电键S闭合,带正电的A板向B板靠近,则θ增大 C.电键S断开,带正电的A板向B板靠近,则θ增大

D.电键S断开,带正电的A板向B板靠近,则θ不变

4. 如图所示,粗糙程度均匀的绝缘斜面下方O点处有一正

点电荷,带负电的小物体以初速度v1从M点沿斜面上滑,到达N点时速度为零,然后下滑回到M点,此时速度为v2(v222v1+v2

A.小物体上升的最大高度为

4gB.从N到M的过程中,小物体的电势能逐渐减小 C.从M到N的过程中,电场力对小物体先做负功后做正功 D.从N到M的过程中,小物体受到的摩擦力和电场力均是先增大后减小

5.如图7所示,在竖直向上的匀强电场中,一根不可伸长的绝缘细绳的一端系着一个带电小球,另一端固定于O点,小球在竖直平面内做匀速圆周运动,最高点为a,最低点为b.不计空气阻力,则 ( )

A.小球带负电 B.电场力跟重力平衡

C.小球在从a点运动到b点的过程中,电势能减小 D.小球在运动过程中机械能守恒

6.如图9所示,带等量异号电荷的两平行金属板在真空中水平放置,M、N为板间同一电场线上的两点,一带电粒子

(不计重力)以速度vM经过M点在电场线上向下运动,且未与下板接触,一段时间后,粒子以速度vN折回N点,则 ( )

A.粒子受电场力的方向一定由M指向N B.粒子在M点的速度一定比在N点的大

C.粒子在M点的电势能一定比在N点的大 D.电场中M点的电势一定高于N点的电势

7.如图11所示,匀强电场中有a、b、c三点.在以它们为顶点的三角形中,∠a=30°、∠c=90°,电场方向与三角形所在平面平行.已知a、b和c点的电势分别为(2-3)V、(2+3)V

和2 V.该三角形的外接圆上最低、最高电势分别为( ) A. (2-3)V、(2+3)V B.0 V、4 V

4343

C.(2-)V、(2+) V D.0 V、23

33V

8. 如图甲,两水平金属板间距为d,板间电场强度的变化规律如图乙所示。t=0时刻,质量为m的带电微粒以初速度v0沿中线射入两板间,0~T时间内微粒匀速运动,T时3

刻微粒恰好经金属边缘飞出。微粒运动过程中未与金属板接触。重力加速度的大小为g。关于微粒在0~T时间内运动的描述,正确的是( )

A.末速度大小为

2v0

B.末速度沿水平方向

C.重力势能减少了1mgd 2D.克服电场力做功为mgd

9.在xOy平面内,有沿y轴负方向的匀强电场,场强大小为E(图中未画出),由A(-l0,0)点斜射出一质量为m,带电荷量为+q的粒子,

B(l0,0)和C(2l0,-3l0)是粒子运动轨迹上的两点,如图所示,其中l0为常数。粒子所受重力忽略不计。求: (1)粒子从A到C过程中电场力对它做的功; (2)粒子从A到C过程所经历的时间; (3)粒子经过C点时的速率。

10.如右图所示,粗糙、绝缘的直轨道OB固定在水平桌面上,B端与桌面边缘对齐,A是轨道上一点,过A点并垂直于轨道的竖直面右侧有大小E=1.5×106N/C,方向水平向右的匀强电场。带负电的小物体P电荷量是2.0×10-

6

C,质量m=0.25kg,与轨道间动摩擦因数μ=0.4,P从

O点由静止开始向右运动,经过0.55s到达A点,到达B点时速度是5m/s,到达空间D点时速度与竖直方向的夹角为α,且tanα=1.2。P在整个运动过程中始终受到水平向右的某外力F作用,F大小与P的速率v的关系如表所示。P视为质点,电荷量保持不变,忽略空气阻力,取g=10 m/s2,求:(1)小物体P从开始运动至速率为2m/s所用的时间;

(2)小物体P从A运动至D的过程,电场力做的功。

因篇幅问题不能全部显示,请点此查看更多更全内容