您的当前位置:首页经典数学趣题集锦

经典数学趣题集锦

2022-04-18 来源:小侦探旅游网


经典数学趣题集锦(1)

☆ ⒈ 称苹果

有十筐苹果,每筐里有十个,共100个,每筐里苹果的重量都是一样,其中有九筐每个苹果的重量都是1斤,另一筐中每个苹果的重量都是0.9斤,但是外表完全一样,用眼看或用手摸无法分辨。现在要你用一台普通的大秤一次把这筐重量轻的找出来。

☆ 2.砝码

用天平称量物体的重量时,总少不了砝码。用一克、二克、四克、八克……的方法设置砝码,一般人都能想到,但这种方法需要的砝码数量太多,实际完全可以用得少一些。请你重新设计一个方案,只用四个砝码就能用天平称量一至四十克的全部整数克的物体的重量。

3. 招侦察员

某部欲招收一名侦察员,决定先进行考试。考试的方法是:凡是参加报考的人都关在一间条件较好的房间里,每天有人按时送水送饭,门口有专人看守。谁先从房间里出去,考试就算过关。有人说头疼要去医院,守门人请来了医生;有的说母亲病重,要回去照顾,守门人用电话联系母亲正在上班。其他人也提了不少理由,守门人就是不让他们出去。最后有个人对守门人说了一句话,守门人就放他出去了。这个人说的是什么?

☆☆ 4. 称零件

有13个零件,外表完全一样,但有一个是不合格品,其重量和其它的不同,且轻重不知。请你用天平称3次,把它找出来(此题难度较大,只要能做出来,便说明智力非凡。时间不限)。

5. 清理垃圾

有一堆垃圾,规定要由张王李三户人家清理。张户因外出没能参加,留下9元钱做代劳费。王户上午起早干了5小时,李户下午接着干了4小时刚好干完。问王户和李户

应怎样分配这9元钱?

☆ 6. 最后剩下谁

1~50

号运动员按顺序排成一排。教练下令:“单数运动员出列!”剩下的运动员重新排队编号。教练又下令:“单数运动员出列!”如此下去,最后只剩下一个人,他是几号运动员?如果教练下的令是“双数运动员出列!”最后剩下的又是谁?

7. 九死一生

古时一位农民被人诬陷,农民据理力争,县官因已经接受别人的贿赂,不肯放人,又找不到理由,就出了个坏主意。叫人拿来十张纸条,对农民说:“这里有十张纸条,其中有九张写的‘死’,一张写的‘生’,你摸一张,如果是‘生’,立即放你回去,如果是‘死’,就怪你命不好,怨不得别人。”聪明的农民早已猜到纸条上写的都是“死”,无论抓哪一张都一样。于是他想了个巧妙的办法,结果死里逃生了。你知道他想的什么办法吗?

8. 死刑犯

一死刑犯就要执行。行刑官对死刑犯说:“你知道我将怎样处决你吗?猜对了,我可以让你死得好受些,给你吃个枪子。要是你猜错了,那就对不起了,请你尝尝上绞刑架的滋味。”行刑官想:

“反正我说了算,说你对你就对,说你错你就错”没想到由于死刑犯聪明的回答,使得行刑官无法执行死刑,这个死刑犯绝处逢生。这个死刑犯是怎样回答的?

9. 海边案件

这是发生在海边的案件。

一天早晨,张某的妻子还未起床,忽听一阵急促的敲门声,门外有人喊:“大嫂大嫂,大哥在家吗?”张氏听到喊声,开门一看,是准备同丈夫合伙外出做生意的李某。忙答道:“他昨天晚上就没回来。”然后急忙向附近的派出所报了案。经调查,张某已被人暗害。派出所人员详细询问了事情的经过后,立即将李某逮捕。开始李某极力否认,但最后不得不低头认罪。派出所人员是根据什么认定是李某做的案呢?

10. 上楼

我上班的办公楼和我居住的家属楼都是6层楼,而我工作和居住的楼层均在3层。于是我想:我每天所爬的台阶数是家住6楼,工作也在6楼的同事的几分之几呢?

11. 幼儿园

每天早晨,我都看见许多年轻的父母去幼儿园送孩子。可有些人既没抱孩子,又不是幼儿园的工作人员,也去幼儿园,他们去干什么?

12. 找相同点

善于寻找事物的异同点和内在的联系,善于发现事物的发展规律,是做好任何研究工作应具备的基本素质和条件。请你找找看,下面的两个数有多少相同点?

2468 3579

☆ 13. 买烟

60年代的哈尔滨。一天,一个小商店里来了一位不速之客。他对售货员说:我是南方人到哈尔滨出差,想带哈尔滨特产的“哈尔滨、迎春、葡萄”烟回去给大伙尝一尝。我现在只有3元钱,全都买烟。”当时的价格分别是0.29元、0.27元和0.23元。售货员经计算后,满足了他的要求。这位南方人每种烟买了几盒?

14. 分家产

从前,有个很有钱的人家。正当全家为新的小生命即将降临而欢喜之际,丈夫突然得了不治之症。临终前留下遗嘱“如果生的是男孩,妻子和儿子各分家产的一半。如果是女孩,女孩分得家产的三分之一,其余归妻子。”丈夫死后不久,妻子就临产了。出乎意料的是,妻子生下一男一女双胞胎!这下妻子为难了:这笔财产该怎样分呢?

15. 一张假币

一天傍晚,一个体鞋店来了一位顾客,拿出10元钱买一双布鞋。该鞋7元一双,需要找给顾客3元。因为没有零钱,鞋店老板拿着这张10元钱到隔壁小店破成零钱,找给顾客3元,顾客拿着钱和鞋走了。第二天,隔壁小店来人说昨天的钱是假的,老板只好拿出10元钱,叹口气说:今天的损失太大了。请你帮他算一算,他一共损失了多少钱?

16. 搬火柴

10根火柴排成一排,现在请你把它们每两根放在一起,要求每次搬动火柴时,必须要跨过两根火柴,例如可以把第6根同第9根或第3根放在一起。

17. 火车站

有两个封闭式的小火车站,每天从甲站开到乙站的车次总是比从乙站开到甲站的车次多,时间长了,火车会不会都集中到乙站呢?

18. 找错误

你看到的这道题,本身就有两个地方有明显错误,但你可能一时看不出来,需要仔细找一找,找不到别睡觉。

19. 分袜子

两个盲人一起到商店买袜子。每人各买了一双黑的,一双蓝的,当时都放在了一起。虽然他们眼睛看不见,但在分手时每人仍然得到了一双黑的,一双蓝的袜子。已知两个人的脚码和买的袜子都是一样的。想想看,他们是怎样分的。

☆☆ 20. 怪城

有一个怪城,城里一边住着好人,一边住着坏人,城门左右各有一个人站岗,其中一个是好人,一个是骗子,好人总说实话,骗子总说假话。有个人到了这个城门后,忘记了哪边是好人,如果问错了人,就会走到骗子住的地方,吃亏上当。这可怎么办呢 ?

☆ 21.遗嘱

古时候,一位老者已气息奄奄。临终前,把两个儿子唤到床前,曰:“你们骑马到西山然后回来,谁的马跑得慢,家产就归谁。”两个儿子骑马出去缓缓而行。一路人见状奇怪,问明原因后,对二人说了一句话,二人便快马加鞭,唯恐落后。这位路人说了句什么话 。

☆ 22. 鸡蛋

一位老太太挎了一筐鸡蛋到市场去卖。路上被一位骑车的人撞倒,鸡蛋全部打破。骑车人搀起老太太说:“你带了多少鸡蛋?我赔你。”老太太说:“总数我也不知道,当初我们从鸡窝里拣鸡蛋时是五个五个拣的,最后又多拣了一个;昨天我老头子查了一遍,他是四个一数的,最后也是多一个;今早我又数了一遍,是三个一数的,也是多一个。”骑车人在心里算了一下,按市场价赔了鸡蛋钱。老太太一共带了多少鸡蛋?

23. 问题小唱

什么菜煮不熟?什么菜洗不净?什么蛋不能吃?什么饼不能吃?

什么河没有水?什么马不能骑?什么牛不耕田?什么火不烧手?

什么球不能踢?什么珠不能摸?什么嘴不讲话?什么药没处买?

什么刀不能切菜?什么锅不能煮饭?

什么事人人不愿做都得做?什么衣人人不爱穿都得穿?

☆ 24. 忙碌的鸽子

哥哥早晨步行去郊外野游。刚走1个小时,弟弟从电视中得知中午有雨,立即骑车给哥哥送伞。出门时,哥俩养的一只小鸽子同时飞出来。它飞到哥哥的头顶又立即掉头向弟弟飞去,到弟弟头顶又掉头向哥哥飞去,直到弟弟撵上哥哥。已知哥哥步行的速度是每小时4公里,弟弟骑车速度是每小时20公里,鸽子的速度是每小时100公里,若鸽子掉头的时间不计,当弟弟撵上哥哥时,鸽子一共飞了多少公里?

25. 钱哪里去了?

有两个父亲给了他们的儿子一些钱。其中一个父亲给了儿子150元,另一个父亲给了儿子100元钱。但两个儿子却说他们一共只得了150元。那100元哪里去了呢?

26. 分牛

从前有个农民,一生养了不少牛。去世前留下遗嘱:牛的总数的一半加半头给儿子,剩下牛的一半加半头给妻子,再剩下的一半加半头给女儿,再剩下的一半加半头宰杀犒劳帮忙的乡亲。农民去世后,他们按遗嘱分完后恰好一头不剩。他们各分了多少头牛?

27. 跑马场

跑马场上有三匹马,并排从起跑线上向同一个方向起跑。已知公马十分钟能跑四圈,母马十分钟能跑三圈,小马十分钟能跑两圈,经过多长时间三匹马又能同时回到起跑线上?

28. 问路

古时一人赴京赶考。来到三岔路口,不知该走哪条路。见一人在石头后面干活,便上前询问。不料此人竟不言语,只把头探出石头上面望着他。赶考者正欲发怒,忽然想到了答案,于是选了一条路继续赶路。你知道他选的是哪条路吗?

29. 小孩

昨天,我的邻居告诉我,他家才6岁的小孩不小心从5楼的窗台上摔下来了。我吃了一惊,忙问“摔的怎么样?”他说“还好,只是胳膊腿擦破了点皮,没伤着骨头。”我心里的石头落了地:“这孩子的命可真大。”

30. 画家

古时某地南庄有一位画家,技艺高超,远近名气很大。北庄也有一位画家,对南庄的画家有点不服气,总想找机会会一会。一天,这位画家来到南庄画家院外,向仆人说明要求见他的主人,仆人将他请进院内。只见房门开着,仆人道声“请进!”他用手一掀门帘,立即返身就走,嘴里直喊“我服了,我服了。”他为什么服了?

31. 火柴拼字

请你用4根火柴拼成一个“田”字。注意火柴不能折。

32. 井底之蛙

井深27米。一只蜻蛙从某月1号早晨从井底往上爬。白天能爬3米,夜里又下降2米。照这样,几号能爬到井上?

33. 钓鱼

有个人喜欢钓鱼。一天钓鱼归来,路上有人问他钓了多少条鱼,他答到:“有6条没头的,9条没尾的,8条半截的。”你知道他钓了多少条鱼吗?

34. A国与B国

从前有两个相邻的A国和B国,关系很好,货币可以通用。后来两国的关系发生了矛盾。A国国王下令:B国的一百元只能购买A国八十元货物。B国的国王也下令:A国的一百元只能购买B国八十元的货物。结果,有个聪明的人利用这个机会发了一笔大财。他是怎样做的?

35. 啤酒与饮料

小张请小李到家会餐。小张知道小李爱动脑筋,于是就给他出了一道题:我今天买啤酒和饮料共花了9.90元,你猜一猜我买了几瓶啤酒、几瓶饮料?猜对了我自罚一杯白酒,猜错了罚你一杯。小李只用了几分钟时间就算出来了,小张只好自罚一杯。已知啤酒每瓶1.7元,饮料每瓶0.7元,你能算出小张买了几瓶啤酒、几瓶饮料?

☆ 36. 帽子问题 (一)

教师把他最得意的三个学生叫到一起,想测测他们的智力。他先让三个学生前后站成一排,然后拿出三白两黑共五顶帽子,让学生看过后把两顶黑帽子藏起来,把三顶白帽子给他们戴上。三个学生都看不见自己戴的帽子,但后边的能看见前边的,前边的看不见后边的。教师让三个学生说出自己戴的帽子的颜色。经过一段时间的思考后,前边的学生回答说:我戴的是白色的。他是怎样知道的?

☆☆ 37. 帽子问题 (二)

本题同上题相似,只是三个学生是相对站立的,彼此互相能看到。经过一段时间,三个学生异口同声地说自己戴的是白帽子。他们是怎么猜到?

38. 量容积

有一个药瓶,上面有刻度,可以从刻度上看出里面的药水的体积。但是这个刻度并不是从瓶底到瓶顶的,而且瓶子的口处比下面小,怎样能量出瓶子的容积呢?

39. 进口货

爸爸出远门回来,给小明买了许多好东西,桌子都摆满了:游戏机、变形金钢、牛奶巧克力、洋娃娃、芒果、魔方、太空枪、机器人、小汽车……请你帮小明找一找,哪些是进口货。

40. 栽树

果园里有10棵苹果树,栽成5行,每行4棵。你知道是怎样栽的吗?

41. 切西瓜

把一个西瓜切4刀,最多可以切成多少块?怎样切?

42. 花母鸡

东院的花母鸡在西院的鸡窝里下了一个蛋,这个蛋的“产权”应归谁呢?

43. 过河 (一)

一只小船仅能载客6人。一天来了2对夫妇,每对夫妇都带了两个孩子,但船家竟未阻挡,全让他们上了船。船家不怕超载吗?

44. 过河 (二)

一根独木桥,一次只能过一个人。一天来了两个人,一个是南来的,一个是北往的,他们都想过河。他们能过去吗?

45. 过河 (三)

一个人走到桥的中间,对面来了一个小孩儿。由于桥很窄,只能通过一个人,因此他想给小孩儿让路,返身往回走。回头一看,后面又来了一个小孩儿。这可怎么办呢?

46. 过河 (四)

某地有一条很宽的河,河上仅有一座桥。解放战争时期,国民党在桥的一头修了一个岗楼,里面有伪军专门看管此桥。河上没有一条船,要过河必须走此桥。通过这座桥至少要 5分钟,伪军4分钟出来一次,发现桥上有人通过就往回撵,任何人都不让过。我地下党交通员要送一封非常重要的信,必须通过此桥。由于交通员的机智勇敢,他顺利地通过了此桥,完成了组织交给的任务。他是怎样通过的?

47. 过河 (五)

三名解放军抓到了三个俘虏,准备把他们带回部队审讯。途中遇到一条大河,河上的桥已经被炸毁,岸边只有一只小船,一次只能坐2个人。俘虏是不老实的,他们总是想伺机逃跑。但他们已经被缴了械,回去也是死。只要保证在任何情况下解放军的人数都不少于俘虏,就能保证安全。俘虏中只有一个人会划船,解放军战士都会划船。解放军战士是怎样完成任务的呢?

48. 过河 (六)

一个农民背着一袋米,牵着一只狗,抱着一只大公鸡,来到一条河边。河里有一只小船,农民一次只能带一样东西。农民不在时,狗会吃鸡,鸡也会吃米,但狗是不吃米的。农民怎样才能把它们安全的带过河去呢?

49. 对表

这是发生在50年代的事。老工人张师傅家新买了一台大挂钟,上完弦挂钟就走了起来。但

家里一块手表也没有,也没有收音机,没法把表的时间调准,只好到离不远的李师傅家对表。因为挂钟太大,拿起来不方便,张师傅空手到李师傅家坐了一会儿,回来就把表调准了。他是怎样做的呢?

50. 男孩和女孩

游泳池里一群小孩儿在游玩。男孩和女孩戴着不同颜色的游泳帽,男孩戴的是蓝色的,女孩戴的是红色的。一个男孩喊到:“真巧,蓝帽和红帽一般多!”一个女孩立刻接口道:“不对,蓝帽比红帽多一倍呢。”“你们说的都不对。”岸上几位不会游泳的小孩异口同声地说。到底有几个男孩几个女孩呢?

51. 长工

从前,有一个地主顾了一个长工在晚上给他看管仓库。一天早晨,这位长工跟地主说:“我昨天晚上做了一个梦,梦见您家发了大财,您的儿子当了大官。”地主听了很高兴,赏了他一些钱。下午,地主就把长工辞掉了。这是为什么吗?

52. 拼正方形

一块如图所示的木板,你能把它重新拼成一块正方形吗?

┌┬┬┐

├┼┼┘

└┴┘

☆ 53. 填数字 (一)

在下边的9个方格里,分别填上1~9,使得左上角4个格、右上角4个格、左下角4个格及右下角4个格里的数字的和都相等。

┌┬┬┐

├┼┼┤

├┼┼┤

└┴┴┘

54. 填数字 (二)

在上题的9个方格里,分别填上1~9,使得每一行、每一列,以及2条对角线中的3个数的和都相等。

┌┬┬┐

├┼┼┤

├┼┼┤

└┴┴┘

55. 移动火柴

用24根火柴可以摆出上题中的方格(称“九宫格”)。如果取走8根,可变成2个正方形。该取走哪8根呢?

56. 谁先到达?

有2个人从甲地到乙地。其中一人骑自行车,另一人先乘火车走了前一半路程,后一半路程不通火车,改坐马车。火车的速度是自行车的6倍,自行车的速度是马车的2倍。谁能先到达目的地呢?

57. 3个盒子

在一个有盖儿的盒子里, 分别放着2个红球,2个兰球和1个红球1个兰球。3个盒盖儿上,分别贴着“2个红球”,“2个兰球”,“1个红球1个兰球”的标牌。由于一时疏忽,3个标牌全贴错了。现在请你只打开一个盒子,摸出一个球,然后把贴错的标牌给调整过来。

58. 水面变化

在一只装有水的盆里, 有一个漂浮在水上的小盒, 盒里放一石块。请你想一想, 如果把石块拿到小盒的外面, 盆里的水面是会升高呢?还是会降低呢?

59. 方中排圆

有一个边长为10厘米的正方形匣子,里面排满了直径为1厘米的圆球。你知道最多可以排多少只球? 应该怎样排列,才能装得最多?

60. 红球与白球

将25个红球和25个白球混合后再分成数量相等的两堆,左边一堆里的红球与右边一堆里的白球哪个多?

61. 填数

请在下边的8个方格中填入1~8 八个数,

使得它们每一横行和竖行的和都相等。这是小学一年级数学课本上的题。你不要小看了, 30分钟能分析出规律就算不错了。

62. 怪岛

在一个极偏僻的地方有个极怪的小岛。岛上所有的男人都和我们一样,总是讲真话。但女人却非常特别:她们从不连续讲2句真话,也从不连续讲2句假话,即使这2句话相隔很长时间也如此。有位好奇的旅行家听说此事后,历尽千辛万苦来到该岛。刚一上岛,碰到了一对夫妇领着一个漂亮的小孩儿迎面而来。旅行家好奇地问小孩:“你是男孩还是女孩?”小孩回答了一句,旅行家没听清。于是小孩的母亲说:“宝宝说谎了”。 这个小孩是男孩还是女孩?

63. 仓库失盗

一天傍晚,两名驾驶员和仓库保管员一起乘车到仓库领东西。其中一名驾驶员与保管员到库里取东西,另一名驾驶员在门外看车。第二天中午,保管员又到库里付货,发现库里的东西被盗了许多,于是马上报了案。公安人员赶到现场时发现:门窗、房顶,均完好无损。检查挂在门上的锁也没有被撬的痕迹,也没有被调换。但是公安人员询问了当时的情况后,立即判断出做案者。你知道做案的人是谁吗?

64. 猜名次

在一次数学竞赛中,甲、乙、丙、丁、戊5位同学得了前5名。他们想知道每个同学的具体名次,于是一起去问老师。老师说:“别急,你们先猜猜看。但每人只能猜2个人的名次。”5位同学猜的结果是:

甲说:“乙第三,丙第五。” 乙说:“丁第二,戊第四。”

丙说:“甲第一,戊第四。” 丁说:“丙第一,乙第二。”

戊说:“丁第二,甲第三。”

同学们猜完后,老师笑着说:“你们答题的能力很强,猜题的能力却不行。你们每个人只猜对了一半。”老师说完后,同学们稍加分析就知道了结果。你知道结果了吗?

65. 花仙

从前,有一位青年在上山采药时,从狼爪下救出一位漂亮的姑娘。青年把姑娘领到家里,给她敷了药。天色渐晚,姑娘正准备回去,突然下起了大雨,直到天快亮时才停。姑娘临走时给青年留下地址,让他去找她父亲求婚。

青年吃完早饭就到姑娘家并说明来意,姑娘的父亲领他到院里,指着七朵花儿对他说:“我有七个女儿,她们都在这里,你如果能找到,就把她带回去。”

青年仔细看了看,毫不犹豫地把其中的一朵摘了下来,昨天那位姑娘立刻出现在他面前。这七朵花长得一模一样,他是怎样看出来的?

☆ 66. 快速回答

⑴树上有6只鸟,用枪打掉1只,还剩几只?

⑵缸里有10条鱼,死了3条,还有几条?

⑶一个四边形木板,用刀砍掉一个角,还有几个角?

⑷一队解放军在路上走,前边10人,后边10人,当中几人?

⑸两个人以相反方向站立,如果要互相能看到对方,最少需要几面镜子?

⑹10个小孩捉迷藏,已经捉到5个,还有几个没捉到?

⑺假如今天中午天空乌云密布,10小时后是否有希望见到太阳?

⑻国际歌一共有多少字?

经典数学趣题集锦(1)

(答 案) ⒈ 称苹果

把十筐苹果按1~10编号,按每筐的编号从里面取出不同数量的苹果,如编号为1的筐里取1个,编号为5的取5个,共(1+10)×10/2 =55个。如果每个苹果的重量都是1斤,一共应该是55斤。由于有一筐的重量较轻,所以不可能到55斤,只能在54-54.9斤之间。如果称量结果比55斤少x两,重量较轻的就一定是编号为x的那筐。实际上,为了称量的方便,第十筐的苹果也可不取,一共取45个,最多45斤。如果称得的结果正好是45斤,说明第十筐是轻的。否则,少几两,就是编号为几的筐的苹果是轻的。

2. 砝码

只要你能想到天平两端都可以放砝码,问题就不难了。所需要的砝码是:1、3、9、27克四种规格。例如:被称量物体加 1克砝码与9克砝码相等时,被称量物体的重量为8克,也就是等于两个砝码的差。这种方案理论是可行的,但实际中并未被采用,因为应用比较麻烦(需要做减法运算)。

3. 招侦察员

他说:“我不考了。”守门人对一个放弃考试的人是可能放他走的。

4. 称零件

先在天平的两边各放4个零件,如果天平平衡,说明坏的在另外的5个里,再称两次不难找到。如果不平衡,说明坏的在这8个中,此时要记住哪些是轻的,哪些是重的。剩下的5个是合格的,可以做为标准。然后把5个合格的放在天平的左端,取2个轻的,3个重的放在右端。此时如果右端低,说明坏的在重的3个里,一次即可称出。其它情况比较简单,这里不再赘述。

5. 清理垃圾

不能简单地认为王户应得5元,李户应得4元。不加分析而想当然办事往往搞错。应该知道,王李两户所做的工作中,除帮张户外,还有他们自己的任务。很明显,每户的工作量为3小时。王帮张干了2小时,李帮张干了1小时,王帮张的工作量是李帮张的2倍,得到的报酬当然也应该是李的2倍。因此,王应得6元,李应得3元。

6. 最后剩下谁

这个问题看起来比较复杂,我们先来分析一下规律。①“剩下”的人是逐渐向中间靠拢的②第一次剩下的运动员的编号能被2整除,第二次剩下的运动员的编号能被4 整除,第三次剩下的能被2 整除……第N次剩下的能被2的N次方整除。最后剩下的是能被32整除的数,即最后剩下的运动员是32号。

7. 九死一生

农民抓起一个纸条立即放入口中吞下,剩下的9张全是“死”,县官只好承认农民抓的是“活”,只得把他放了。

8. 死刑犯

死刑犯回答的是:“上绞刑架”。行刑官如果说他猜错了,按他事先说的,应执行绞刑,但这样一来,死刑犯说的又对了,应执行枪决。如果执行枪决,死刑犯说的就是错的,而说错了应执行绞刑。因此,无论怎样执行都是矛盾的。

9. 海边案件

从李某问的话中可以肯定他要找的是张某而不是张某的妻子,既然如此,他应该喊张某而不应喊“大嫂”,这说明他已经知道张某不在家,但他又问“大哥在家吗?”显然自相矛盾。

10.上楼

如果不加思索,很容易得出二分之一的结论,但这个结论是错误的。这里的关键是住一楼的人不需要爬楼梯。如果你想上三楼,需要爬两层台阶,而绝不是三层,想上六楼,要爬五层台阶而不是六层。答案:五分之二。

11.幼儿园

是一些稍大点儿的孩子,他们可以自己走着去。

12. 找相同点

乍一看好像只有不同点,没有相同点。其实只要你善于寻找,相同之处还是不少的,这是一种很有用的能力的培养。现举数例:①都是阿拉伯数字②都是4位数③都是正数④都是整数⑤相邻两数的差相等。

13. 买烟

此题最好用解“不定方程组”的方法,否则只能用“试探”法。设葡萄、迎春各买一盒,余钱全部买哈尔滨烟,共可买10盒。再设迎春、哈尔滨烟各买一盒,余钱买葡萄烟,共可买12盒,也就是说,顾客最少可以买10盒,最多可以买12盒。先看看买10盒的情况,设哈尔滨、迎春、葡萄烟分别买x、y、z盒,可列出不定方程组:

29x+27y+23z=300 ①

x+y+z=10 ②

由②解出y=10-x-z 代入①后整理得:

2z=x-15 ③

∵ x≤8, z≥1 ∴ ③式无解

将②式之10改为11,最后整理得:2x=3+4z,

左边为偶数,右边为奇数,无解。最后,再将11改为12,经整理得:2z=12+x, 设x=2 (只能取偶数),得z=7,y=3,再设x=4,得:z=8,y=0,不合要求。x不可能再大,因此答案只有一个,即:哈尔滨牌买 2盒,迎春牌买 3盒,葡萄牌买 7盒。

14. 分家产

这里关键不是数量的多少,而是数量的关系。细分析遗嘱,不难看出,妻子和儿子的数量相同,妻子的数量是女儿的2倍。有了这个关系就不难分配了:妻子和儿子各得总数的五分之二,女儿得总数的五分之一。

15. 一张假币

赔了10元,即一张假币的面值。许多人猜此题时都把问题搞复杂了,反而把结果弄错。

16. 搬火柴

此题比较简单,答案从略。

17.火车站

不会,因为甲站到乙站挂的车箱少。

18.找错误

两处错误是:①在题目中“找”的后面。②在“明显”的后面。如果你要什么所犯的“错误”

是找不到的,所能找到的是只是“错误”两个字。

19. 分袜子

把每双袜子都分成两只,每人各拿一只即可。

20. 怪城

可以这样问:“如果我问对面那个人,应往哪边走,他会怎样告诉我?”这个问的方法是非常巧妙的,它把两个相反的回答变成了一个统一的结果:最后必然是一个真话一个假话。真话对结果没有影响,假话把路给指错了。这个问题有点像数学上的一个公式:正数乘以负数,结果总是负数。因此,只要按回答的相反的路走就保证不会错。

21. 遗嘱

“你们把马换过来骑”。注意问题中说的是谁的“马”慢。快与慢是相对的,问谁的马慢与问谁的马快是一回事。

22.鸡蛋

许多人对此类问题感到无从下手。把这个问题转化成数学题就是:有一个数,无论用3、4、5去除,结果都余1,求这个数。看起来好象很难,如果换个说法,就容易理解了:有一个数,减去1就能同时被3、4、5整除。显然,任何3、4、5的公倍数加1都是这个问题的解,最小的解是61,往下是121、181等等。问题中挎筐的是一位老太太,因此鸡蛋不可能很多,故可认为是61个。

23. 问题小唱

生菜,灰菜,脸蛋,铁饼,银河,海马,蜗牛,鬼火,地球,眼珠,烟嘴,后悔药,车刀,烟袋锅,做梦,寿衣。

24. 忙碌的鸽子

如果你想求出鸽子每次飞行的距离,那就把问题复杂化了,因为兄弟二人的位置时时在变化,他们之间的距离也是在不断地变化(缩小),你很难求出结果。其实这个问题并不复杂,因为鸽子是连续飞行的,只要求出飞行时间就能求出飞行距离,这个时间就是弟弟骑车撵上哥哥的时间,这是很容易求的。答案:25公里。

25. 钱哪里去了?

两个父亲和两个儿子实际是三个人(祖孙三代)。

26.分牛

这类题最好用倒推法求。因为最后一头牛也没剩,可以肯定是杀了一头。按遗嘱要求,女儿只能分2头,才能剩下一头。按同样的思路分析可以得到结果:儿子分7头,妻子分4头,女儿分2头。

27.跑马场

十分钟。这时公马跑了四圈,母马跑三圈,小马跑两圈。请你再想想看,如果公马十分钟能跑六圈,母马能跑四圈,其他不变,答案又是多少?

28. 问路

人的脑袋露出“石”头上,相当“石”字出头,即暗示为“右”。因此应向右走。

29. 小孩

不是命大。小孩是从自家的窗户台上掉到自己家的地上,仅1米多高,不会有生命危险。

30.画家

门帘是画的。北庄的画家误以为是真的门帘而去伸手掀,可见画的非常逼真。

31.火柴拼字

如果你把火柴当做几何中的线去拼,你永远也拼不出来。火柴杆是方的,把四根火柴并拢在一起,从火柴的根部看过去,就是一个很象“田”的字。

32. 井底之蛙

如果以为一天净爬1米,需要到27号才能爬到井上,那就是犯了想当然的错误。1号这天,蜻蛙净爬1米,那么2号就是从1米开始爬的,依次后推,可以想到,25号是从24米开始爬的。因为白天可以爬3米,到晚上就爬到井上了,不会再“下滑”。

33. 钓鱼

“6”去了“头”,“9”去了“尾”都是“0”,“8”从中截断是两个“0”,因此是一条也没钓到。

34. A国与B国

在A国用A国币换B国币,再把B国币带到B国换成A国币,就是以“保值”的兑换“贬值”的,再把“贬值”的变成“保值”的,周而复始。这种便宜的事只能一开始实现,以后谁也不会拿本国的钱到邻国去用。

35.啤酒与饮料

解法一:设啤酒买x瓶,饮料买y瓶,根据题意得:

17x+7y=99 , 两边除以y的系数7得:2x+3x/7+y=14+1/7 移项整理得:2x+y-14=(1-3x)/7

......①∵

x>0,y>o,∴(1-3x)<0,∴2x+y<14,x≤6。∵①式的左边是整数,∴右边也是整数。在1≤x≤6的范围内,只有x=5满足条件,故得

x=5,y=2。即啤酒买了5瓶,饮料买了2瓶。此解法比较严密,但一般人不易掌握。

解法二: 因为17×6>99,所以啤酒最多买5瓶。不妨先假定买2瓶,于是饮料必然是9瓶,此时共需花9.7元,余0.2元。如果多买1瓶啤酒,就要少买3瓶饮料,并余0.4元;如果多买2瓶啤酒(即买4瓶),就要少买6瓶饮料,并余出0.80元,加原来的0.20元共余1元,正好是1瓶啤酒与1瓶饮料的差价,即再多买1瓶啤酒,少买1瓶饮料,正好是9.9元。此解法用的是试探法,只要有小学的数学知识就可以。

36.帽子问题 (一)

他这样分析:如果我和第二个人戴的都是黑的,后边的人马上就能知道自己帽子的颜色,但

他没有回答,说明我和第二个人至少有一个人的帽子是白色。如果我戴的是黑帽子,由于第三个人没回答,第二个人很快就能推断出他戴的是白的,但他也没有回答,说明我戴的不是黑的。

37.帽子问题 (二)

其中一个学生(不妨设为甲)这样想:假设我戴的是黑帽子,另两个学生看到后,都会做这样的推理(先假设为乙):一共只有两顶黑帽子,甲已经戴了一顶,如果我戴的是黑帽子,丙看到我和甲戴的都是黑帽子,他立刻就能说出自己戴的帽子是白色的,他既然在犹豫,说明我和甲之中至少有一个不是戴黑帽子,但甲戴的是黑帽子,因此我戴的一定是白色的,因此乙很快就能判断出自己戴的帽子的颜色。但乙也在犹豫,说明我戴的帽子不是黑的。因为这三个学生的智力都比较高,都会做同样的推理,因此都答出了正确的结果。(解此题需要有较强的思维能力,有些人可能一时看不懂答案,也属正常,不要自卑)

38.量容积

先把瓶子口朝上量出里面药水的容积设为V1,再把瓶子倒过来,此时瓶子里药水的容积仍为V1,而上部的容积可以从刻度上看出来,设为V2,则瓶子的容积等于V1+V2。

39.进口货

牛奶、巧克力和芒果,它们都是“进口货”(吃的东西)。

40. 栽树

从顶上看,栽成一个五角星,5个顶点和5个交点各一棵。

41. 切西瓜

一般可以切成14块。方法是:从上向下两两相交切三刀,每刀之间约成120度角。这样可切成7块(当中有一块)。再从中间横切一刀即可。据说最多可切成15块,感兴趣的读者不妨试试。

42. 花母鸡

这个蛋是鸡下的,“产权”当然是花母鸡的。

43. 过河 (一)

其实上船的就是6个人,船家当然不会阻拦。孩子的概念是相对的。这是祖孙三代。

44. 过河 (二)

两个人的方向是一致的,都是朝北走,当然能过去了。

45. 过河 (三)

把两个小孩抱起来,然后转身再放下,两个小孩就调换位置了。

46. 过河 (四)

交通员看到伪军进了岗楼后,立即上桥,在快到4分钟时返身往回走。当伪军出来时看见交通员在往回走,就把他“撵”过桥去了。

47. 过河 (五)

第一次:一名解放军战士押一个不会划船的俘虏过河,解放军战士返回。

第二次:命令两个俘虏划船过河,让会划船的俘虏单独回来。

第三次:两名解放军战士划船过去,然后解放军战士押一个俘虏回来。

第四次:解放军战士押会划船的俘虏过河,把不会划船的俘虏带回来。

第五次:两名解放军战士过河,命令会划船的俘虏回去。

第六次:会划船的俘虏带一个俘虏过河再单独返回。

第七次:会划船的俘虏再次带一个俘虏过河。

48. 过河 (六)

第一次:农民把鸡带到对岸返回。

第二次:把狗带到对岸,把鸡带回(关键)。

第三次:把米带到对岸返回。

第四次:把鸡带过去。

49. 对表

张师傅在家把挂钟上好弦,临走时看一下时间,设为t1。到李师傅家后立即先看一下时间,设为t2,走时再看一下时间,设为t3,这样可以知道在李师傅家呆的时间为t3-t2,

到家后立即看一下时间,设为t4,可以求出在路上的时间为(t4-t1)-(t3-t2) = t。因此可求出当前时间Time = t/2 + t3。

50. 男孩和女孩

答案略。

51. 长工

晚上看管仓库是不许睡觉的,长工说他做了一个梦,证明他晚上睡觉了。开始地主只顾高兴了,过一会儿想过来了,自然把他辞了。

52. 拼正方形

设小四方形的边长为1,则面积为5,故拼成后的大四方形的边 长l=5的平方根=1的平方+2的平方。由勾股定理可知:l正好

是直角边分别为1和2的直角三角形的斜边。因此可按右图的abc 和a-f线将木板切成三块。然后将木板abc移到cde处,用胶把

dbc边与ce边粘牢;将agf移到def处,把对应边粘牢即可。

b┌┬┬┐a

g├┼┼┘f

c└┴┘e

53. 填数字 (一)

注意到中间的方格里的数字是公用的,可不予考虑。因此可按“左上角3 个数、右上角3个数、左下角3 个数及右下角3

个数的和都相等”来考虑。由于1+2+3+...+9=9(1+9)/2=45因此任意3 个数的和基本应为

45÷3=15。如能再考虑7不能与1或8相邻,9不能与6~8相邻,3不能与2和6相邻,4不能与1相邻(理由请自行分析)等情况,就比较容易解了。据分析,此题共有9个不同的答案,这里给出7个,另外2个请读者自己找。

1 5 7 1 5 3 3 7 2 1 6 2 1 6 7 5 3 8 4 9 5

9 6 3 9 8 7 5 4 6 8 9 7 8 5 2 7 1 4 2 3 1

2 4 8 4 2 6 9 1 8 4 3 5 3 4 9 6 2 5 7 6 8

54. 填数字 (二)

此题有不同的解法,这里给出2个笔者研究出的解法,仅供参考。

解法一:

因为那么多的3个数的和都相等,因此3个数的和肯定是15。15是奇数, 要使3个数的和为奇数,只有2 种情况:

①3个数都是奇数②1个奇数,2个偶数。满足条件①的有2种组

合, 即1,5,9和3,5,7。满足②的组合有6种, 即1,6,8; 3,4,8;

5,2,8;5,4,6;7,2,6和9,2,4。这8种组合恰好是3行、3列和2条对角线,因此答案是唯一的。因为5出现了4次,

因此必须放在中间一格,出现3次的2,4,6,8必须放在4个角上, 出现2次的1,3,7,9必须放在中间一行或中间一列。根据以上要求,

再考虑到5两侧的数必须互补的特点,结果马上就出来了。

解法二:

设想在9个方格中填上同样的数,并保持总和不变。显然应填的数是5。经分析, 1和9都不能放在角上(原因请读者自己分析)

,因此可把1和9先填到中间一行或中间一列。9两侧的数字必须小于5,否则其和就超过15了。满足这个条件的数只有2,3,4, 但因9是奇数,只能与2个偶数2,4组成15。类似的道理, 1两侧的数字必须大于5,并且是2个偶数,显然只有6和8才能满足。剩下的3和7就不难找到自己的位置了。

第一步 951

第二步2945618

第三步294753618

55. 移动火柴

你看看“回”字怎么写就知道答案了。如果原题要求拿掉12根火柴,也是要变成2个正方形,又该怎样取呢?

56. 谁先到达?

因为马车的速度只有自行车的一半,当马车走完一半的路程时,自行车恰好走完全程。因此,无论火车的速度有多快,也要落后。

57. 3个盒子

选贴有“1个红球1个兰球”的盒子,如果摸出的是红球,说明这个盒子里装的一定是2个红球。贴有“2个兰球”的盒子里面装的一定是1个红球1个兰球,另一个盒子里装的一定是2个兰球。如果摸出的是兰球,情况正好相反。

58. 水面变化

石块在盒里排开的水的体积,是与石块同重量的水的体积。把石块从盒里拿出来,所排开的水的体积,只是石块的体积。显然,前者的体积大于后者,因此水面会下降。

59. 方中排圆

如果按每排10个的方法排列, 显然只能排10×10=100个。看起来似乎排列的很紧密,

其实这种排列法并不是最理想的,因为相邻2排球的中间有很大的空隙。设法减少这些空隙,就能多放一些球。减少空隙的方法是:

将相邻2行互相错开排列, 具体做法见右图。虽然有4行各少了1 个,但却多出一行,所以比10×10的排法能多出 10 - 4 = 6个。(有的书上说多7个,读者算算看)

●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

60. 红球与白球

一样多。

61. 填 数

解这类题光靠碰是没有意义的。解法思路如下:

把交叉的“十字”拆成2条独立的方格。现在的问题变成在8个格中放9个数的问题。因为有2个格是相同的,因此总数在37~44 之间。又因为3个格的总和 S3 = S/9X3 = S/3 是整数,因此总数S一定能被3整除。满足此条 件的数只有2个: 39和42。39比36(1~8的和)多3,说明公用的数是3,每3个格的和为39/3=13。42比36多6,说明公用的数是6,每3个格的和为42/3 = 14。至此就很容易得到答案了。

62. 怪岛

答案略。

63. 仓库失盗

是看车的司机做的案。他趁另一名驾驶员和保管员进库的时机,用事先准备好的、与原来一样的锁把原来的锁换下来。当天晚上做案后,又把原来的锁换上去。

64. 猜名次

此题分析起来比较复杂,故仅给出结果:第一名:丁; 第二名:乙; 第三名:甲; 第四名:戊; 第五名:丙 。

65. 花仙

因为昨天夜里下了一场雨,其它的花上都有水珠,而青年遇到的那位因为是在雨停了以后才回去的,身上不会有水珠。

66. 快速回答

⑴一只没有,其余的都飞了 。

⑵10条,死鱼也是鱼。

⑶不一定。如果是沿着对角线切,就剩三个角;如果从某一个角向对边切,则剩四个角;如果是从某一边向相邻边切,则剩五个角,比原来多一个角 。

⑷9人,总共11人。题中的前、后和中间都是相对的。

⑸一个也不用,两个人面对面即可。

⑹还有 4个,这是1个人捉9个人的游戏。

⑺不可能,半夜不会有太阳。

⑻三个字,分别是:国、际、歌。

最古老的数学趣题

在七间房子里,每间都养着七只猫;在这七只猫中,不论哪只,都能捕到七只老鼠;而这七只老鼠,每只都要吃掉七个麦穗;如果每个麦穗都能剥下七合①麦粒,请问:房子、猫、老鼠、麦穗、麦粒,都加在一起总共该有多少数?

答案:总数是19607

房子有7间,猫有72=49只,鼠有73=343只,麦穗有74=2401个,麦粒有75=16807合。全部加起来是 7+72+73+74+75=19607

(顺便提一下,在这里不必考虑为什么把不同种类的东西加起来这个问题)。

经典数学趣题集锦(2)

1、蝴蝶效应

气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?」论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。Lorenz为何要写这篇论文呢?

这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。

这一天,Lorenz想更进一步了解某段纪录的後续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的後续结果。当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小时後,结果出来了,不过令他目瞪口呆。结果和原资讯两相比较,初期数据还差不多,越到後期,数据差异就越大了,就像是不同的两笔资讯。而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。所以长期的准确预测天气是不可能的。

参考资料:阿草的葫芦(下册)——远哲科学教育基金会

2、动物中的数学“天才”

蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。

丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?

蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。

冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。

真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。(生活时报)

3、麦比乌斯带

每一张纸均有两个面和封闭曲线状的棱(edge),如果有一张纸它有一条棱而且只有一个面,使得一只蚂蚁能够不越过棱就可从纸上的任何一点到达其他任何一点,这有可能吗?事实上是可能的只要把一条纸带半扭转,再把两头贴上就行了。这是德国数学家麦比乌斯(M?bius.A.F

1790-1868)在1858年发现的,自此以後那种带就以他的名字命名,称为麦比乌斯带。有了这种玩具使得一支数学的分支拓朴学得以蓬勃发展。

4、数学家的遗嘱

阿拉伯数学家花拉子密的遗嘱,当时他的妻子正怀着他们的第一胎小孩。“如果我亲爱的妻子帮我生个儿子,我的儿子将继承三分之二的遗产,我的妻子将得三分之一;如果是生女的,我的妻子将继承三分之二的遗产,我的女儿将得三分之一。”。

而不幸的是,在孩子出生前,这位数学家就去世了。之后,发生的事更困扰大家,他的妻子帮他生了一对龙凤胎,而问题就发生在他的遗嘱内容。

如何遵照数学家的遗嘱,将遗产分给他的妻子、儿子、女儿呢?

5、火柴游戏

一个最普通的火柴游戏就是两人一起玩,先置若干支火柴於桌上,两人轮流取,每次所取的数目可先作一些限制,规定取走最後一根火柴者获胜。

规则一:若限制每次所取的火柴数目最少一根,最多三根,则如何玩才可致胜?

例如:桌面上有n=15根火柴,甲﹑乙两人轮流取,甲先取,则甲应如何取才能致胜?

为了要取得最後一根,甲必须最後留下零根火柴给乙,故在最後一步之前的轮取中,甲不能留下1根或2根或3根,否则乙就可以全部取走而获胜。如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的火柴而赢了游戏。同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取後留下4根火柴,最後也一定是甲获胜。由上之分析可知,甲只要使得桌面上的火柴数为4﹑8﹑12﹑16...等让乙去取,则甲必稳操胜券。因此若

原先桌面上的火柴数为15,则甲应取3根。(∵15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根(∵18-2=16)。

规则二:限制每次所取的火柴数目为1至4根,则又如何致胜?

原则:若甲先取,则甲每次取时,须留5的倍数的火柴给乙去取。

通则:有n支火柴,每次可取1至k支,则甲每次取後所留的火柴数目必须为k+1之倍数。

规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1﹑3﹑7,则又该如何玩法?

分析:1﹑3﹑7均为奇数,由於目标为0,而0为偶数,所以先取者甲,须使桌上的火柴数为偶数,因为乙在偶数的火柴数中,不可能再取去1﹑3﹑7根火柴後获得0,但假使如此也不能保证甲必赢,因为甲对於火柴数的奇或偶,也是无法依照己意来控制的。因为〔偶-奇=奇,奇-奇=偶〕,所以每次取後,桌上的火柴数奇偶相反。若开始时是奇数,如17,甲先取,则不论甲取多少(1或3或7),剩下的便是偶数,乙随後又把偶数变成奇数,甲又把奇数回覆到偶数,最後甲是注定为赢家;反之,若开始时为偶数,则甲注定会输。

通则:开局是奇数,先取者必胜;反之,若开局为偶数,则先取者会输。

规则四:限制每次所取的火柴数是1或4(一个奇数,一个偶数)。

分析:如前规则二,若甲先取,则甲每次取时留5的倍数的火柴给乙去取,则甲必胜。此外,若甲留给乙取的火柴数为5之倍数加2时,甲也可赢得游戏,因为玩的时候可以控制每轮所取的火柴数为5(若乙取1,甲则取4;若乙取4,则甲取1),最後剩下2根,那时乙只能取1,甲便可取得最後一根而获胜。

通则:若甲先取,则甲每次取时所留火柴数为5之倍数或5的倍数加2。

6、韩信点兵

韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。刘邦茫然而不知其数。

我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?

首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然後再加3,得9948(人)。

中国有一本数学古书「孙子算经」也有类似的问题:「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?」

答曰:「二十三」

术曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。」

孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之後,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席非常重要的地位。

7、二十棵树植树问题

数学史上有个20棵树植树问题,几个世纪以来一直享誉全球,不断给人类智慧的滋养,聪明的启迪,伴随人类文明几个世纪,点缀装饰于高档工艺美术的百花丛中,美丽经久不衰、与日俱增且不断进步,不断发展,在人类文明的进程中更加芬芳娇艳,更加靓丽多采。

20棵树植树问题,源于植树,升华在数学上的图谱学中,图谱构造的智、巧、美又广泛应用于社会的方方面面。20棵树植树问题,简单地说,就是:有20棵树,若每行四棵,问怎样种植(组排),才能使行数更多?

20棵树植树问题,早在十六世纪,古希腊、古罗马、古埃及等都先后完成了十六行的排列并将美丽的图谱广泛应用于高雅装饰建筑、华丽工艺美术。进入十八世纪,德国数学家高斯猜想20棵树植树问题应能达到十八行,但一直未能见其发表绘制出的十八行图谱。直到十九世纪,此猜想才被美国的娱乐数学大师山姆.劳埃德完成并绘制出了精美的十八行图谱,而后还制成娱乐棋盛行于欧美,颇受人们喜爱。

进入20世纪,电子计算机的高速发展方兴未艾,电子计算机的普及和应用在数学领域中也大显身手,电子计算机绘制出的数学图谱更是广泛应用于工艺美术、建筑装饰和自然科学领域。数学上的20棵树植树问题也随之有了更新的进展。在二十世纪七十年代,两位数学爱好者巧妙地运用电子计算机超越数学大师山姆.劳埃德保持的十八行纪录,成功地绘制出了精湛美丽的二十行图谱,创造了20棵树植树问题新世纪的新纪录并保持至今。

乌飞兔走,星移斗换。 今天,人类已经从20世纪跨入了21世纪的第一个年代。20棵树植树问题又被数学家们从新提出:跨入21世纪,20棵树,每行四棵,还能有更新的进展吗?数学界正翘首以待。国外有人曾以二十万美金设奖希望能有新的突破,随着高科技的与日俱进和更新发展,期望将来人类的聪明智慧与精明才干能突破现在20行的世界纪录,让20棵树植树问题能有更新更美的图谱问世,扮靓新的世纪。

8、小兔亏了多少钱

小兔的百货商店今开开业,狐狸买了一瓶酒付了10元,小兔找给他3元。晚上整理一天的收入时,发现狐狸付的10元是假币。小兔一着急,这下可亏大了,大哭起来。其它小动物听到了哭声都跑了过来。

小熊笨笨说:“赶紧去找狐狸要回亏的钱。大家帮忙算一算,小兔亏了多少钱,再去向狐狸要钱。”

小猪说:“10元是假的,找了狐狸3元钱是真的,亏了3元,向狐狸要3元钱。”

小狗欢欢一听,说:“错了!10元钱是假的。找了狐狸3元,还给了狐狸一瓶7元的酒呀!所以一共亏了10元(7+3)呀!要向狐狸要10元钱呀!”

小猴乐乐说:“狐狸的10元钱是假的,小兔就亏了10元,再向狐狸要10元真钱就行了呀!”

其余的小动物听了小狗欢欢和小猴乐乐的话,一起去狐狸家帮助小兔要回亏了的10元钱。

决定了泊松一生道路的数学趣题

泊松(Poisson S.-D,B.,1781.6.21~1840.4.25)是法国数学家,曾任过欧洲许多国家科学院的院士,在积分理论、微分方程、概率论、级数理论等方面都有过较大的贡献。

据说泊松在青年时代研究过一个有趣的数学游戏:

某人有12品脱啤酒一瓶(品脱是英容量单位,1品脱=0.568升),想从中倒出6品脱。但是他没有6品脱的容器,只有一个8品脱的容器和一个5品脱的容器。怎样的倒法才能使5品脱的容器中恰好装好了6品脱啤酒?

不容易想到的是,对这个数学游戏的研究竟决定了泊松一生的道路。从此,他决心要当一位数学家。由于他的刻苦努力,他终于实现了自己的愿望。

这个数学游戏有两种不同的解法,如下面的两个表所示。

第一种解法:

12 12 4 4 9 9 1 1 6

8 0 8 3 3 0 8 6 6

5 0 0 5 0 3 3 5 0

第二种解法:

12 12 4 0 8 8 3 3 11 11 6 6

8 0 8 8 0 4 4 8 0 1 1 6

5 0 0 4 4 0 5 1 1 0 5 0

下面两个题目是与泊松青年时代研究过的题目类型相同的;希望青少年朋友研究后也会有人决心当数学家。

一个桶装满10斤油,另外有一个能装3斤油的空桶和一个能装7斤油的空桶。试用这三个桶把10斤油平分为两份。

有大、中、小三个酒桶,分别能装19斤、13斤、7斤酒。现在大桶空着,另外两个桶都装满了酒。试问:用这三个桶倒几次可以把全部酒平分成两份?

因篇幅问题不能全部显示,请点此查看更多更全内容