第46卷 第11期 2013在 截'l}机 MICROM0T0RS Vo1.46.No.11 NOV.2013 11月 永磁同步电机调速系统的全局快速终端滑模控制 雷晓彝 ,谭海军 ,陈 卓 ,李蜀伟 (1.空军工程大学航空航天工程学院,西安710038;2.西北工业大学自动化学院,西安710072) 摘要:永磁同步电机(PMSM)是一个多变量强耦合非线性系统,对外部扰动和内部参数变化较为敏感。传统PI调 节器由于控制方法简单,被广泛应用于PMSM调速系统,但它往往不能满足高性能控制要求。为此,将滑模变结构 控制(SMC)应用于PMSM调速系统,采用全局快速终端滑模(GFTSM)控制策略,给出了控制器的设计方法,并对比 传统PI控制方法进行仿真分析。结果表明,相对于PI调节,该控制策略使系统具有响应快、稳定性好、超调量小 以及抗负载扰动强等优点,提高了系统的鲁棒性。 关键词:永磁同步电机;全局快速终端滑模;调速;鲁棒性 中图分类号:TM351:TM341 文献标志码:A 文章编号:1001—6848(2013)11—0038.04 Global Fast Terminal Slidillg Mode Controller of Permanent Magnet Synchronous Motor LEI Xiaoben ,TAN Haijun ,CHEN Zhuo ,LI Shuwei (1.School of Aeronautics and Astronautics Engineering,Air Force Engineering University,Xi'an 7 1 0038,China; 2.Institute of Automation,Northwestern Polytechnical University,Xi'an 7 10072,China) Abstract:The permanent magnet synchronous motor(PMSM)is a widely used nonlinear multi-variable COH— pied system.It is sensitive to the load disturbance and the change of interior parameter.Traditional PI con- troller is widely used in the speed control of PMSM for its simplicity,but it cant meet the need of high per— formance.Therefore,gave the application of sliding mode control(SMC)in PMSM speed control system,U— sing a kind of control strategy named global fast terminal sliding mode(GFTSM),gave the design method of the controller,and had a simulation analysis after compared with traditional PI control method.The results demonstrate that compared with PI adjustment,the system has the advantages of fastness rapid response,sta— bility,robustness,no over—shoot and rejecting load disturbance. Key words:permanent magnet synchronous motor;global fast terminal sliding mode;adjustable speed;ro— bllstn ss 0 引 言 现代交流伺服系统中,永磁同步电机(PMSM) 以其优异性能广泛应用在航空航天器、军工武器系 统、工业自动化、数控机床、机器人及特种加工等 场所。然而,PMSM是一个多变量、强耦合、非线 作为一种特殊的鲁棒控制方法,在解决不确定非线 性系统的控制问题上显示出巨大的生命力。目前, 相关文献已经对SMC在永磁同步电机中的应用进行 了较深人研究,取得了一系列研究成果 。文献 [4]将滑模控制应用于永磁同步电机直接转矩控制, 选择指数趋近律来设计滑模控制器;文献[5]将模 糊控制和滑模控制相结合来提高永磁直线同步电机 的鲁棒性,采用动态Terminal滑模求取控制率U;文 献[6—7]将常规SMC应用到永磁同步电机交流伺服 系统,采用比例切换控制型求得控制率。但实际系 统应用时,SMC由于切换开关的时间延迟和空问滞 性、变参数的复杂系统。常规的PID控制,依赖对 象的准确模型,虽可以满足一定范围内的控制要求, 但其容易受到系统外部扰动和电机内部参数变化的 影响,难以得到满意的调速及定位性能¨ J,同时 系统的鲁棒性也不够理想。 滑模变结构控制(SMC)产生于20世纪50年代, 后、状态检测的误差等因素,易使系统产生抖振现 收稿日期:2013—02—19 基金项目:陕西省自然科学基金赞助项目(2009JM8014) 作者简介:雷晓彝(1972),男,副教授,研究方向为智能电机控制。 谭海军(1988),男,硕士研究生,研究方向为电力电子与电力传动。 11期 雷晓辑等:永磁同步电机调速系统的全局快速终端滑模控制 ・39・ 象,这对机电系统十分有害。 根据PMSM的状态方程 设计具有鲁棒性的全局 快速终端滑模(GFISM)变结构伺服控制器,建立了 PMSM的全局快速终端滑模变结构控制仿真模型。由 于全局快速终端滑模控制律是连续的,不含切换项, 能有效的抑制控制系统的抖振现象。通过与PI调速 间内收敛为零。因此,终端滑模具有动态响应速度 快,有限时间收敛、稳态跟踪精度高、更强的鲁棒 性等优点,特别适用于高精度控制,并且在电机控 制、机器人控制、飞行器控制等领域得到了推广和 应用。然而,终端滑模的收敛速度不是最优的,原 因是系统状态接*衡时,非线性滑动模态的收敛 速度要比线性滑动模态的收敛速度慢。为此,引入 了全局快速终端滑动模态。其滑动模态形式为 ]: 5: +0 +8 q :0 效果的比较,证明该控制策略具有较大的控制优势。 1 六相永磁同步电机数学建模 (6) 在建模及分析、设计过程中常做以下假设: ①忽略铁心饱和效应;②不计涡流和磁滞损耗; ③转子和永磁体上都没有阻尼作用;④反电动势波 形为正弦;⑤相绕组完全对称;⑥正常状态下绕组 通以对称电流;⑦转子磁场对称分布。 在以上假设下,建立在两相旋转坐标系下的永 磁同步电机数学模型,其电压方程: 『 d= d+p d一∞ (1) 【Uq=Riq+pg,q一∞ d 磁链方程: f =Ld +√3 r (2) I 。=Lqi 对于表面PMSM有L =L ,转矩方程: (3) : 机械运动方程: —TL—Kfo) ̄-l,警 选择电机的直轴、交轴电流及电机转速为状态变 量,采用磁场定向的电流矢量控制方法,因此根据以 上各式推导出在两相旋转坐标系下解耦状态方程为: 誓=一一=一df + 一 一 一,+ , ,.●4-. ——-I-一 M㈩ ,<、 doJ Kf ,./3 f.TL ~dt 一 s+ 一了 式中, 为电机同步角速度,i 、i 为d、q轴定子 电流分量, 、 为d、q轴定子磁链分量, 为 电磁转矩,n 为电机极对数, 为负载转矩,.,为 转子转动惯量, 为机械角速度, 为阻尼系数。 2控制器设计 2.1全局快速终端滑模 传统的滑模变结构控制采用线性滑模,系统状 态与给定轨迹之间的偏差渐近收敛,跟踪误差不会 收敛到零。终端滑模是在设计滑动超平面时引入非 线性函数,使得在滑模面上跟踪误差能够在有限时 由上式可得: q/P+似( )/p:8 (7) 一令Y= ,则 : 一 (8) P 可得: + 二旦 y:一 (9) 。P ‘P 当t=0时,可解得: y 。 (一 _)e((p-q)/p) ̄l 0)) 一旦+昼e-(( )仙 +v(0)e-(( ) (1O) 由于 =0时,Y=0,t=t。,上式变为: 星± 【Q 2: (p-q)/p (11) /3 . 因此在滑模态上任意初始状态” 0收敛到平衡 状态 =0的时间为: n 2 我们可以通过设定 、/3、P、q使系统在有限时 间t 内收敛到平衡状态 =0。 由式(5)有: :一似一 (13) 当系统状态 远离平衡状态时,收敛时间主要由 式 =一 决定;当系统状态 接*衡状态时, 收敛时间主要由式 =一ocx,因此,使得系统状态在 有限时间收敛,保留了线性滑动模态在渐*衡态时 的快速性,从而实现系统状态快速、精确地收敛到平 衡状态,所以称此滑动模态为全局快速滑动模态。 全局快速终端滑模控制具有三个优点:①收敛 时间可以根据选取参数进行调节,保证了系统在有 限时间内达到滑模面,系统状态在有限时间内收敛 到平衡状态;②控制律是连续的,不含切换项,消 除了控制系统的抖振现象;③对系统的不确定性和 ・ D・ 搬'l!机 46卷 外界干扰具有强鲁棒性,通过选取合适的q/p使系 统状态到达足够小的邻域内,沿滑模面收敛到平衡 状态 。 2.2控制量的求取 设有不确定性的二阶非线性系统: f (14) 【 := X)+g(X)M(t)+g(x) 其中, X)、g(X)为R 域中的光滑函数,g(X)≠ 0,“∈R 。d(X)表示系统的参数不确定性和外部干 扰的总和,设l d(X)l≤ 。 具有递归结构的快速滑动模态表示为: r【 】- (15) 【5I=;0+ o5o十卢o 0 0/ 。 其中, 。、 >0,且q。、P。(q。<p。)为正奇数。 设计具有鲁棒性的全局快速终端滑模控制律为: “( 一 ) + J8。 c n] t+ys- ) (16) 其巾, 、 >0,且q、P(q<p)为正奇数。 用 。表示电机转角, 表示电机转速;控制输 入M=i ;电机输出Y= .。令 X,t)=厂( ,t)= Kf 一了cc, ,6( ,£)= 根据PMSM解耦状态方程 式(5),则系统可表示为: r l= 2 i := , )+6( , u-了TL+d( ) (17) 其中,d( )是一个非负的函数,满足l d( )}≤ 。 根据永磁同步电机设计参数Kf=73.8、J= 0.000 3 kg・m 、 r=0.036 5 Wb、n =8、Tl =11.8 N・1TI,设d(X)=lOOsint+200cos2t,可得: r l= 2 { 2=一246 000x2+843u一39 333+ 【 100sin£+200c。s2f 设位鼍指令r=10 000 t,则S0=卜- 1,s1=5o+ OL。 。+JB。SO qo/P。,滑模控制中,通过选择适当参数可 以使得跟踪误差在所希望的时间内收敛为零。控制 律参数取%=2、30=1、P0=9,qo:5、 =100、P =3、q=1、"r/=1、L=300。将以上参数代人控制率 式(16)可以得到控制输入///。 3仿真研究 基于全局快速终端滑模控制的六相永磁同步电 机控制系统的控制过程如图1所示。 图1 六相永磁同步电机控制系统原理图 根据滑模变结构控制系统的设计,将给定转速、 实际转速和转角作为滑模控制模块的输入,由滑模 控制律式(16)编写滑模变控制S-Function函数,可 得滑模控制模块,如图2所示。 图2滑模控制simulink模型图 仿真参数设置中,给定转速设为10 000 r/min, 为了验证控制系统的调速性能以及在转速突变时间 段的暂态控制性能,在0.15 S转速变为5 000 r/min, 负载转矩设为11.8 N・in,仿真时间设为0.3 S。以 传统的PI控制为参考,检验全局快速终端滑模的控 制效果。运行仿真程序观测PMSM转速、电流和转 矩变化曲线。图3为转速对比波形,图4为电流对 比波形,图5为转矩对比波形。 t/s (} )滑模变结构控制 图3转速波形 11期 雷晓彝等:永磁同步电机调速系统的全局快速终端滑模控制 ・41・ 并不明显。在转速突变为5 000 r/min的暂态过程中 8 6 4 2 0 0 0 O O 0 0 O 0 O 0 0 O O8 6 4 2 O O O O 0 矗 GFFSM控制能够在短时间内达到指定转速并且具有 O 0 O 5 0 a 0 P O 0常腔 2 0 2 5 O 3 0 0.O5 0 l 0.15 0 2 0 25 0.3 t/s (b)滑模变结构控制 图4六相电流波形 t/s (b)滑模变结构控制 图5转矩波形 由图3可得,在10 000 r/min的转速下,两种 控制方法都具有快速平稳的响应特性,GFTSM优势 良好的稳态特征,而PI控制响应时间较长且出现超 调现象。图4表明采用GFTSM控制的六相电流恢复 时间较PI控制短。图5表明采用GFTSM控制的转 矩比PI控制时具有较小的稳态误差,且在转速突变 暂态过程中采用GFFSM控制转矩突变较小,且转矩 恢复速度较快。 4 结 论 本文建立了六相永磁容错电机全局快速终端滑 模变结构控制系统仿真模型,通过仿真验证了控制 系统的可行性,并分析了分别采用PI控制和滑模控 制时电机绕组电流、电磁转矩和转速仿真结果。仿 真结果表明,以全局快速终端滑模变结构设计的调 二J] 1j 1J 1J速系统比PI调速系统具有更好的动态和静态性能, 以及更强的抗干扰能力和鲁棒性,达到了预期的设 计要求。 参考文献 汪海波,周波,方斯琛.永磁同步电机调速系统的滑模控制 [J].电工技术学报,2009,24(9):71.77. 孙强,程明,周鹗,等.新型双凸极永磁同步电机调速系统的变参 数Pl控制[J].中国电机工程学报,2O03,23(6):117.123. 辛平,白晶.基于滑模变结构的飞剪控制系统的仿真研究[J]. 煤矿机械,2011,32(2):137—140. 贾洪平,贺益康.永磁同步电机滑模变结构直接转矩控制[J]. 电工技术学报,2006,26(1):1—6. 雷晓彝,陈卓,熊攀,等.基于模糊动态Terminal滑模的永磁 同步电机控制研究[J].空军工程大学学报:自然科学版, 2012,13(4):6-10. 王志宇,王长松,范普成,等.基于滑模变结构的永磁同步电 机调速系统设计[J].微电机,2011,44(6):52-56. Zhang Bin,Li Yaohua.A PMSM Sliding Mode Control System Based on Model Reference Adaptive Control[C].Digital Object Identifier, 2000:336-341. 刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学 出版社,2005:333-335. ]