您的当前位置:首页直接利用工程酵母菌株发酵乙醇

直接利用工程酵母菌株发酵乙醇

2021-09-06 来源:小侦探旅游网
Synergistic Saccharification, and DirectFermentation to Ethanol, of Amorphous Cellulose by Use of an Engineered YeastStrain Codisplaying Three Types of Cellulolytic Enzyme

Yasuya Fujita, Junji Ito, Mitsuyoshi Ueda, Hideki Fukudaand Akihiko Kondo

Appl. Environ. Microbiol. 10.1128/AEM.70.2.1207-1212.2004.

2004, 70(2):1207. DOI:

Updated information and services can be found at: http://aem.asm.org/content/70/2/1207These include:

REFERENCES

This article cites 38 articles, 6 of which can be accessed free at:http://aem.asm.org/content/70/2/1207#ref-list-1

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when newarticles cite this article), more»

Information about commercial reprint orders: To subscribe to to another ASM Journal go to: http://aem.asm.org/site/misc/reprints.xhtmlhttp://journals.asm.org/site/subscriptions/

Downloaded from http://aem.asm.org/ on November 21, 2011 by guestA0099-2240/04/$08.00PPLIEDANDENVIRONMENTALMICROBIOLOGY,Feb.2004,p.1207–1212Vol.70,No.2

Copyright©2004,Americanϩ0DOI:Society10.1128/AEM.70.2.1207–1212.2004

forMicrobiology.AllRightsReserved.

SynergisticAmorphousSaccharification,CodisplayingCelluloseandDirectFermentationtoEthanol,of

ThreebyUseTypesofofanCellulolyticEngineeredEnzyme

YeastStrain

YasuyaFujita,1JunjiIto,2MitsuyoshiUeda,3HidekiFukuda,1andAkihikoKondo2*

DivisionEngineering,ofMolecularScience,GraduateSchoolofScienceandTechnology,1andDepartmentFacultyofSyntheticofEngineering,2KyotoUniversity,ChemistryKobeYoshida,andUniversity,Biological1-1Sakyo-ku,Chemistry,Rokkodaicho,DepartmentofChemicalScienceand

Kyoto606-8501,GraduateNada-ku,3SchoolKobeJapan

ofEngineering,

657-8501,and

Received2September2003/Accepted3November2003

wasAwhole-cellbiocatalystwiththeabilitytoinducesynergisticandsequentialcellulose-degradationcharomycesconstructedcerevisiaethrough.Whencodisplayacellsurfaceofthreedisplaytypessystemofcellulolyticbasedonenzyme␣-agglutininonthewascellused,surfaceTrichodermaoftheyeastreactionreeseiSac-en-doglucanaseplayedenzymesasindividualIIandcellobiohydrolasefusionproteinsIIandAspergillusaculeatus␤-glucosidase1weresimultaneouslycodis-cencehighermicroscope.onthecellsurfacewasconfirmedwiththebyobservationC-terminal-halfofimmunofluorescence-labeledregionof␣-agglutinin.Codisplaycellswithofathefluores-threeonlycellobiohydrolaseendoglucanasehydrolyticactivityAyeaststraincodisplayingendoglucanaseIIandcellobiohydrolaseIIshowedsignificantlyaIIII,enabledandwithitsamorphouscellulose(phosphoricacid-swollencellulose)thanonedisplayingthemainyeastproductstrainwastodirectlycellobiose;producecodisplayethanolof␤from-glucosidasetheamorphous1,endoglucanasecelluloseII,(whichandperyeastconsumed)literstrainfromcodisplayingandwas100.45gperg/g,liter␤-glucosidasewhichwithincorresponds40h.1TheandendoglucanaseIIcouldnot),withayieldofapproximately3gtoyield88.5%(inofgramsthetheoreticalofethanolyield.producedThisindicatespergramthatofcarbohydratesimultaneousplishedsynergisticusingasaccharificationyeaststraincodisplayingandfermentationthethreeofcellulolyticamorphousenzymes.

cellulosetoethanolcanbeefficientlyaccom-Biomassistheearth’smostattractivealternativeamongfuelextracellularlysecretesthreetypesofcellulolyticenzyme,in-sourcesandmostsustainableenergyresourceandisrepro-cludingfiveendoglucanases(EG[EC3.2.1.4])(17,19–22),twoducedbythebioconversionofcarbondioxide.Ethanolpro-cellobiohydrolases(CBH[EC3.2.1.91])(9,30),andtwo␤-glu-ducedfrombiomassistodaythemostwidelyusedbiofuelwhencosidases(BGL[EC3.2.1.21])(3).Endoglucanasesactran-blendedwithgasoline(e.g.,E10[gasolinecontaining10%eth-domlyagainsttheamorphousregionofthecellulosechaintoanol]).Asthecarbondioxidereleasedbycombustionisrecy-producereducingandnonreducingendsforcellobiohydro-cledintobiomass,theuseofbiofuelscansignificantlyreducelases,whichproducecellobiosefromreducingornonreducingtheaccumulationofgreenhousegas.Ofthebiomassmaterials,endsofcrystallinecellulose.Cellulosechainsarethuseffi-cellulose,amajorcomponentofthecellwallofplants,isthecientlydegradedtosolublecellobioseandcellooligosacchar-mostabundantandrenewablecarbohydrate.Inrecentyears,itidesbytheendo-exosynergismofEGandCBH(9,13,29,36).hasbeenproposedthatwastecellulosicbiomasscouldbeusedInthelaststepofenzymaticcellulosedegradation,cellooligo-asacheapandreadilyavailablesugartoreplacestarchyma-saccharidesarehydrolyzedtoglucoseby␤-glucosidase.Inad-terialsinfermentation.Manyresearchershavepreviouslytriedditiontoendo-exosynergism,exo-exosynergismbetweentwotodevelopanefficientandinexpensiveprocessforethanolcellobiohydrolaseshasalsobeenreported(9,14,28,29).productionfromsuchwastebyusingrecombinantbacteriaandSuchcellulolyticenzymeshavebeenexpressedinbacteriayeast(e.g.,Saccharomycescerevisiae)(1,2,10,12,37),butso(34,38)andyeast(4,7,15,31,32)asawayofreducingthecostfarwithoutsuccess.Aprocessofthiskindisneededtosolveofcellulaseproductionandotherpretreatmentsintheprocessenvironmentalproblemssuchasglobalwarmingandtocon-ofethanolproductionfromcellulosicmaterials(12,26,37).structasocietyindependentoffossilfuels.

Recentlysomeresearchershavedevelopedethanologenicbac-TheanaerobicbacteriaClostridiumthermocellumandClos-teria(8,34,38)andyeast(4,7)thatcanproduceethanolfromtridiumcellulovoransandthefilamentousfungusTrichodermacellulosicmaterials.TherecombinantKlebsiellaoxytocaSZ21reeseiarewellknownasstronglycellulolyticandxylanolyticdevelopedbyZhouetal.wasabletodirectlyproduceethanolmicroorganisms.C.thermocellumandC.cellulovoransproducefromamorphouscellulose,althoughwithinsufficientethanolacellulosomecomplexconsistingofcellulaseandhemicellu-yield(38).Whenusingotherrecombinantethanologenicbac-laseorganizedonthecellsurface(5,25);T.reesei,meanwhile,

teriaoryeasttofermentcellulose,additionofcommercialcellulaseisnecessaryforethanolproduction.

Previously,wereporteddirectandefficientethanolproduc-Science*Correspondingauthor.Mailingaddress:Departmentoftionfromthesolublecellulosicpolysaccharidebarley␤-glucanRokkodaicho,andEngineering,withayeaststraincodisplayingonthecellsurfaceT.reesei6196.Fax:81-78-803-6196.Nada-ku,FacultyKobeE-mail:657-8501,ofEngineering,KobeUniversity,Chemical1-1kondo@cx.kobe-u.ac.jp.

Japan.Phone:81-78-803-EGII(glycosylhydrolasefamily5)andAspergillusaculeatus

1207

Downloaded from http://aem.asm.org/ on November 21, 2011 by guest1208FUJITAETAL.

APPL.ENVIRON.MICROBIOL.

TABLE1.Characteristicsofstrainsandplasmidsusedinthisstudy

Strainorplasmid

Relevantfeature(s)aReferenceorsource

Strains

S.MT8-1

cerevisiaeyeaststrainsMT8-1/pCAS1MAT27MT8-1/pFCBH2w3NoDisplaydisplayaadehis3(controlleu2strain)trp1ura324

MT8-1/pEG23u31H6PresentMT8-1/pBG211

DisplayofCBHII7studyMT8-1/pEG23u31H6/pFCBH2w3Displayof15

MT8-1/pBG211/pEG23u31H6

DisplayofEGIIDisplayofBGL1

Present7

studyBacterialMT8-1/pBG211/pEG23u31H6/pFCBH2w3DisplayofEGIIofBGL1andCBHIIBGL1,andEGII,EGII

andCBHII

PresentstudyE.coliNovaBluestrainendA1FЈ{proABhsdR17ϩ(lacIrK12ϪqZm⌬K12ϩM15::Tn)supE4410(Tetthi-1r)}gyrA96relA1lacrecA1/Novagen

PlasmidspCAS1pFCBH2w3TRP124

pEG23u31H6TRP1NoURA3Surfaceexpressionexpression(controlofT.plasmid)

reeseicellobiohydrolasegene(CBHII)PresentpBG211

7studyHIS3SurfaceSurfaceexpressionexpressionofofA.T.aculeatusreeseiendoglucanase␤-glucosidasegenegene(EGII)(BGL1)

15

ageneEachundergenethewascontrolexpressedoftheasglyceraldehydeafusionprotein3-phosphatewiththesecretiondehydrogenasesignalsequence(GAPDH)ofR.promoter.

oryzaeglucoamylasegeneandtheC-terminalhalfregionofthe␣-agglutininBGL1(family3)(7).Inthepresentstudy,weattemptedsi-Enzymeassay.Endoglucanaseandcellobiohydrolaseactivitiesweredeter-multaneousandsynergisticsaccharificationandfermentationminedbyhydrolysisof1gofamorphouscelluloseperliterin50mMsodiumofamorphouscellulosetoethanolwiththeuseofonlyare-acetatebuffer(pH5.0)at30°C.Phosphoricacid-swollencellulosewaspreparedcombinantyeaststraincodisplayingthreetypesofcellulolyticfromAvicelPH-101(FlukaChemieGmbH,Buchs,Switzerland)asamorphousenzyme,namely,T.reeseiEGIIandCBHII(family6)andcellulose(33).AfterprecultivationinSDmediumfor24handaerobiccultiva-tioninSDCmediumfor72hat30°C,cellswerecollectedbycentrifugationatA.aculeatusBGL1.

6,000ϫgfor10minat4°C,washedwithdistilledwatertwice,andresuspendedinareactionmixturewiththeopticaldensityat600nm(ODsupernatantwasseparatedby600)adjustedto10.Afterahydrolysisreaction,thecentrifugationforMATERIALSANDMETHODS

3minat20,000ϫgand4°CandusedformeasurementoftheamountofStrainsandmedia.Thebacterialandyeaststrainsusedaresummarizedinreducingsugar,totalsolublesugar,andinsolublesugarandforhigh-performanceTable1.EscherichiacoliwasgrowninLuria-Bertanimedium(10goftryptoneliquidchromatography(HPLC)analysisofhydrolysisproductsasdescribedperliter,5gofyeastextractperliter,5gofsodiumchlorideperliter)containingbelow.Theamountofreducingsugarandtotalsolublesugarreleasedfrom100␮gofampicillinperml.Followingprecultivationinsyntheticmedium(SDinsolublesubstrateandinsolublesugarwasmeasuredusingaSomogyi-Nelsonmedium;6.7gofyeastnitrogenbasewithoutaminoacid[DifcoLaboratories,method(35)andaphenol-sulfuricacidmethod(6)todeterminethenumberofDetroit,Mich.]perliterwithappropriatesupplementscontaining20gofglucoseglucoseequivalents.

perliter),yeastcellswereaerobicallycultivatedat30°CinSDmediumcontain-␤-Glucosidaseactivitywasmeasuredusingp-nitrophenyl-␤-D-glucopyranosideing20gofCasaminoAcids(Difco)perliter(SDCmedium).

(NacalaiTesque,Inc.,Kyoto,Japan)asthesubstrateaccordingtoapreviouslyConstructionofplasmids.TheplasmidpFCBH2w3forcell-surfacedisplayofdescribedmethod(7)butwithanOD600of0.1inthereactionmixture.

theT.reeseiCBHIIgenewasconstructedasfollows:withfirst-strandcDNADeterminationofhydrolysisproducts.TheendproductsreleasedfromthepreparedfromT.reeseiQM9414asthetemplate,a1.39-kbpSacII-BglIIDNAphosphoric-acidswollencellulosewereanalyzedaccordingtoapreviouslyde-fragmentofthematureregionoftheT.reeseiCBHIIgenefusedwiththegenescribedmethod(7).

encodingtheFLAGpeptidetagattheNterminuswaspreparedbyPCRasFermentation.AfterprecultivationinSDmediumfor24h,yeastcellsweredescribedpreviously(18)withthetwoprimers5Ј-GAGCCGCGGGAGACTAaerobicallycultivatedfor72hat30°CinSDCmedium,collectedbycentrifuga-CAAGGATGACGATGACAAGCAAGCTTGCTCAAGCGTCTGGGGCC-3Јtionfor10minat6,000ϫgand4°C,andwashedwithdistilledwatertwice.Theand5Ј-CGAACGAGATCTAGGAACGATGGGTTTGCGTTTGTGAGAAGcellpelletsweretheninoculatedintofermentationmedium(6.7gofyeastC-3Ј.TheDNAfragmentwasdigestedbySacIIandBglIIandintroducedintothenitrogenbasewithoutaminoacid[Difco]perliterwithappropriatesupplements,SacII-BglIIsiteofthecell-surfaceexpressionplasmidpCAS1(24)containingthe20gofCasaminoAcidsperliter,10gofnonsterilizedphosphoricacid-swollengenesencodingthesecretion-signalsequenceoftheglucoamylasegenefromcelluloseperliterasthesolecarbonsource),andethanolfermentationwasRhizopusoryzaeandthe3Ј-halfregionofthe␣-agglutiningene(thegeneencod-anaerobicallyperformedat30°CwiththeOD600ofthefermentationmedium

ingtheC-terminal320aminoacidresiduesand446bpofthe3Ј-flankingregion)(11).TheresultingplasmidwasnamedpFCBH2w3(Fig.1).TheplasmidsusedaresummarizedinTable1.

Yeasttransformation.TransformationoftheexpressionplasmidsintoS.cere-visiaeMT8-1wascarriedoutbyalithiumacetatemethodusingaYEASTMAKERyeast-transformationsystem(ClontechLaboratories,Inc.,PaloAlto,Calif.).ThetransformantsconstructedandusedinthestudyaresummarizedinTable1.Immunofluorescencelabelingofcells.Immunofluorescencelabelingofcellswascarriedoutaccordingtoamethoddescribedpreviously(7).Astheprimaryantibody,mouseanti-RGS(His)Calif.),rabbitanti-FLAGIgG(Sigma4immunoglobulinG(IgG)(Qiagen,Valencia,ChemicalCo.,St.Louis,Mo.)andrabbitanti-A.aculeatusBGL1IgGwereusedatdilutionratesof1:100,1:100,and1:500withtheRGS(His)BGL1–␣-agglutininfusion6–EGII–␣-agglutinin,FLAGϪCBHII–␣-agglutinin,andproteins,respectively.Assecondaryantibody,goatanti-mouseIgGconjugatedwithAlexaFluor488andgoatanti-rabbitIgGcon-jugatedwithAlexaFluor546(MolecularProbes,Inc.,Eugene,Oreg.)wereusedyeastFIG.1.Expressionplasmidfordisplayofatadilutionrateof1:250.

oryzaecellglucoamylasesurface(pFCBH2w3).T.reeseiCBHIIonthegene.

s.s.,secretionsignalsequenceofR.Downloaded from http://aem.asm.org/ on November 21, 2011 by guestVOL.70,2004DIRECTFERMENTATIONTOETHANOLOFAMORPHOUSCELLULOSE1209

rescenceFIG.2.1/pBG211micrographsImmunofluorescence(columns2,labeling3,and5)ofoftransformants:S.cerevisiaeNomarskidifferentialinterferencemicrographs(columns1and4)andimmunofluo-Cellsanti-RGS(His)were(D),labeledMT8-1/pEG23u31H6/pFCBH2w3MT8-1/pCAS1(control)(A),MT8-1/pFCBH2w3(B),MT8-1/pEG23u31H6(C),MT8-withrabbitanti-FLAGIgGantibody(E),MT8-1/pBG211/pEG23u31H6andgoatanti-rabbitIgGconjugated(F),andMT8-1/pBG211/pEG23u31H6/pFCBH2w3withAlexaFluor546(column2),withmouse(G).andgoatanti-rabbit4antibodyIgGandconjugatedgoatanti-mousewithAlexaIgGFluorconjugated546(columnwithAlexa5).

Fluor488(column3),andwithrabbitanti-A.aculeatusBGL1antibodyadjustedto50.Ethanol,totalsugar,andglucoseconcentrationsweremeasuredusinggaschromatography,aphenol-sulfuricacidmethod(6)asaglucoseequiv-constructedayeaststraincodisplayingthreetypesofcellulo-alent,andaGlucoseCIItest(WakoPureChemicalIndustries,Ltd.,Osaka,lyticenzymeonthecellsurfacesimultaneously.TheexpressionJapan),respectively.Thegaschromatograph(modelGC-8A,Shimadzu,Kyoto,plasmidspBG211,pEG23u31H6,andpFCBH2w3(Fig.1)(forJapan)(fittedwithaflameionizationdetector)wasoperatedunderthefollowingdisplayoftheBGL1–␣-agglutinin,RGS(His)6–EGII–␣-agglu-conditions:glasscolumn(2.0mby3.2mm)packedwithThermon-3000(Shi-madzu);temperatureofcolumn,injector,anddetector,180°C;nitrogencarriertinin,andFLAG–CBHII–␣-agglutininfusiongenes)weregasflowrate,25ml/min.Totalsugarconcentrationsweredeterminedbysub-transformedorcotransformedintotheyeastS.cerevisiaeMT8-tractingtheyeastcell-derivedsugarfromtheculturemediumcontainingthe1strainsimultaneously,andtheresultanttransformantswereyeastcellsandcellulose.

designatedstrainsMT8-1/pFCBH2w3,MT8-1/pEG23u31H6,MT8-1/pBG211,MT8-1/pEG23u31H6/pFCBH2w3,MT8-1/RESULTS

pBG211/pEG23u31H6,andMT8-1/pBG211/pEG23u31H6/pFCBH2w3(Table1).

CodisplayofthreetypesofcellulolyticenzymeontheyeastToconfirmcodisplayofBGL1,EGII,andCBHIIonthecellsurface.Tofermentamorphouscellulosetoethanol,we

yeastcellsurface,immunofluorescencelabelingofthecells

Downloaded from http://aem.asm.org/ on November 21, 2011 by guest1210FUJITAETAL.APPL.ENVIRON.MICROBIOL.

aerobiccultivationofcellsinSDCmediumfor72hat30°C.IntheyeaststraindisplayingCBHII(MT8-1/pFCBH2w3),reduc-ingsugarwasnotdetectedbyaSomogyi-Nelsonmethod(Fig.3)andonlyalittlesugarwasdetectedbyaphenol-sulfuricacidmethod(datanotshown).However,theyeaststrainco-displayingEGIIandCBHII(MT8-1/pEG23u31H6/pFCBH2w3)showedmuchhigheractivitythantheyeaststraindisplayingEGIIalone(MT8-1/pEG23u31H6)(Fig.3),andasignificantreductionintheinsolublecelluloseinthereactionmixturewasobserved(Fig.4).ThisresultsuggeststhatCBHIIisactiveontheyeastcellsurfaceandplaysaveryimportantroleinamor-phouscellulosedegradation.TheactivitiesofEGIIandCBHIItaggedwithRGS(His)loseFIG.3.Timecourseofsynergistichydrolysis6andFLAGwerenearlyequaltothosepFCBH2w3byS.cerevisiaeMT8-1/pCAS1(control)(openofamorphouscellu-ofnontaggedEGIIandCBHII(datanotshown).

MT8-1/pEG23u31H6/pFCBH2w3(opentriangle),MT8-1/pEG23u31H6square),MT8-1/HPLCanalysiswascarriedouttoexaminethehydrolysispEG23u31H6/pFCBH2w3(closedcircle),(closedtriangle),productsreleasedfromamorphouscellulosebystrainsMT8-averagesoffiveindependent(openexperiments.

circle).ThedataandpointsMT8-1/pBG211/representthe1/pEG23u31H6andMT8-1/pEG23u31H6/pFCBH2w3.Sam-plessubjectedtoahydrolysisreactionfor72hwereusedforHPLCanalysis.Cellobioseandcellotrioseweredetectedasthewascarriedoutusingrabbitanti-FLAGantibody,mouseanti-mainproductsofstrainMT8-1/pEG23u31H6,whilealargeRGS(His)4antibody,andrabbitanti-A.aculeatusBGL1anti-amountofcellobiosewasdetectedasthemainproductofbodyastheprimaryantibody.AsshowninFig.2,theredstrainMT8-1/pEG23u31H6/pFCBH2w3(datanotshown).fluorescenceofAlexaFluor546-conjugatedgoatanti-rabbitOnlyasmallamountofcellobiosewasdetectedasthemainIgGwasobservedforstrainsMT8-1/pFCBH2w3,MT8-1/productofstrainMT8-1/pFCBH2w3,andnohydrolysisprod-pEG23u31H6/pFCBH2w3,andMT8-1/pBG211/pEG23u31H6/uctwasobservedinthereactionmixtureofthecontrolstrainpFCBH2w3(Fig.2,column2);thatofAlexaFluor546-con-MT8-1/pCAS1(datanotshown).

jugatedanti-rabbitIgGwasobservedforstrainsMT8-1/Degradationofamorphouscellulosebyayeaststraincodis-pBG211,MT8-1/pBG211/pEG23u31H6,andMT8-1/pBG211/playingthreetypesofcellulolyticenzyme.TheabilityofthepEG23u31H6/pFCBH2w3(Fig.2,column5);andthegreenyeaststrainMT8-1/pBG211/pEG23u31H6/pFCBH2w3tohy-fluorescenceofAlexaFluor488-conjugatedgoatanti-mousedrolyzeamorphouscellulosewasexaminedusingthesameIgGwasobservedforstrainsMT8-1/pEG23u31H6,MT8-1/methodasdescribedabove.InspiteofcodisplayofthreetypespEG23u31H6/pFCBH2w3,MT8-1/pBG211/pEG23u31H6,ofenzymeonthecellsurface,noreducingsugarwasdetectedandMT8-1/pBG211/pEG23u31H6/pFCBH2w3(Fig.2,col-inthereactionmixtureofthestrain(Fig.3).However,theumn3).TheseresultsconfirmsingledisplayandcodisplayofresidualamountofinsolublesugarinthereactionmixtureofBGL1,EGII,andCBHII.Specifically,threetypesofcellu-thisstrainwassmallerthanthatseenwithyeaststrainMT8-1/lase(namely,BGL1,EGII,andCBHII)weresuccessfullypEG23u31H6/pFCBH2w3(Fig.4).Thereducingsugarpro-codisplayedonthecellsurfaceofstrainMT8-1/pBG211/ducedbythehydrolysisofamorphouscellulosewasthusim-pEG23u31H6/pFCBH2w3.

mediatelytakenupbytheyeastcells.

Degradationofamorphouscellulosebyyeaststraincodis-Directfermentationofamorphouscellulosetoethanol.Di-playingEGIIandCBHII.Toexaminetheeffectofcodisplayofrectproductionofethanolfromamorphouscellulosewasper-EGIIandCBHIIonhydrolysisactivity,ahydrolysisexperi-formedusingtheyeaststraincodisplayingBGL1,EGII,andmentwasperformedusingstrainsMT8-1/pFCBH2w3,MT8-1/CBHII(MT8-1/pBG211/pEG23u31H6/pFCBH2w3).Fermen-pEG23u31H6,andMT8-1/pEG23u31H6/pFCBH2w3after

tationwasanaerobicallyperformedat30°Cinfermentation

S.FIG.4.Graph(a)andpBG211/pEG23u31H6/pFCBH2w3cerevisiaeMT8-1/pCAS1photograph(control)(b)representingtheresidualamountofcelluloseinhydrolysisreactionmixtureafter72hofreactionwith(E).(A),TheMT8-1/pFCBH2w3datarepresentthe(B),averagesMT8-1/pEG23u31H6ofthreeindependent(C),MT8-1/pEG23u31H6/pFCBH2w3experiments.

(D),andMT8-1/Downloaded from http://aem.asm.org/ on November 21, 2011 by guestVOL.70,2004DIRECTFERMENTATIONTOETHANOLOFAMORPHOUSCELLULOSE1211

celluloseFIG.5.pEG23u31H6/pFCBH2w3.asTimethecoursesolecarbonofproductionofethanolfromamorphousar;Symbols:sourcetriangle,withethanol;strainMT8-1/pBG211/circle,averagessquare,ofglucosesevenindependentinculturebroth.experiments.

Thedatapointsrepresenttotalsug-themediumcontaining10gofphosphoricacid-swollencelluloseperliterasthesolecarbonsourceandusingyeastcells(ODϭat50)30°C.subjectedEthanoltowasaerobicnotproducedcultivationfrominSDCamorphousmediumcellulosefor72600hwhentheyeaststraincodisplayingEGIIandBGL1(MT8-1/pBG211/pEG23u31H6)wasused(datanotshown),butwithstrainMT8-1/pBG211/pEG23u31H6/pFCBH2w3,ethanolwasefficientlyproducedandthemaximumconcentrationofaround2.9g/literwasreachedwithin40hofcommencingfermentation(Fig.5).Whenfermentationwasstarted,theethanolconcentrationincreasedandthetotalsugarconcen-trationdecreasedwithoutatimelag.Glucosewasnotdetectedintheculturebrothduringfermentation.Theyield(ingramsofethanolproducedpergramofsugarconsumed)was0.45g/g,whichcorrespondsto88.5%ofthetheoreticalyieldfor40hoffermentation.

DISCUSSION

Toreducethecostofethanolproductionfromcellulosicbiomass,recombinantmicroorganismswiththeabilitytofer-mentcellulosehavebeendevelopedbymanyresearchers(4,8,34,38).Thesewhole-cellbiocatalystswiththeabilitytode-gradecellulosehaveseveraladvantages:conversionofcello-bioseandglucose,whichinhibitcellulaseand␤-glucosidaseactivities;lowersterilizationrequirements,asglucoseisimme-diatelytakenupbycellsandethanolisproduced;andasinglereactor.Inthefermentationofcellulosewithyeastcells,cel-lulosemustfirstbedegradedtoglucose,asyeastcellsarenotabletoutilizecelluloseorcellooligosaccharides.Enzymaticdegradationofcelluloserequiresthreetypesofcellulolyticenzyme(endoglucanase,cellobiohydrolase,and␤-glucosidase),andasynergisticeffectbetweenendoglucanaseandcellobio-hydrolaseisessentialforefficienthydrolysisofcellulose(9,13,29,36).Wethereforeconstructedayeaststraininwhichthethreetypesofcellulasenecessarytoefficientlydegradecellu-losearecodisplayedonthecellsurface,with␣-agglutininasananchor(Fig.2).Whilecodisplayoftwoproteinsthroughtheuseofacellsurfacedisplaysystembasedon␣-agglutininhasbeenreported(7,15,16,23),thereisnoreportofcodisplayof

threeormoreproteins.AsdemonstratedbytheresultshowninFig.5,wesucceededindirectlyproducingethanolfromamorphouscellulosewithouttheadditionofcellulaseenzymesbydevelopingayeaststraincodisplayingT.reeseiEGIIandCBHIIandA.aculeatusBGL1onthecellsurface.Thisisthefirstreportofcodisplayontheyeastcellsurfaceofthreefunctionalproteins.

IthaspreviouslybeenreportedthatEGandCBHactsyn-ergisticallyoncellulosechainstoproducesolublecellooligo-saccharidesandthatCBHisthekeycellulaseincellulosehydrolysis(9,13,29,36).Althoughsurface-displayedCBHIIhadonlyalittleactivitywithrespecttoamorphouscellulose,theyeaststraincodisplayingEGIIandCBHIIshowedsignifi-cantlyhigheractivitythantheyeaststraindisplayingonlyEGIIandproducedcellobioseasthemainproduct(Fig.3).ThisresultindicatesthatCBHIIplaysaveryimportantroleincellulosedegradationandthatsynergismbetweenEGIIandCBHIIissuccessfullyinducedontheyeastcellsurface.

InadditiontocodisplayofEGIIandCBHII,BGL1wassimultaneouslycodisplayedtoproduceethanolfromamor-phouscellulose.The␤-glucosidaseactivityoftheyeaststraincodisplayingEGII,CBHII,andBGL1(164.5U/g[dryweight]ofcells)wasapproximately2.0and1.6timeshigher,respec-tively,thanthatofthestraindisplayingBGL1andthestraincodisplayingBGL1andEGII(80.8and129.8U/g[dryweight]ofcells).Interestingly,flowcytometricanalysisoffluorescence-labeledyeastcellsconfirmedthatthetotalproteinofyeaststrainsdisplayingtwoorthreeenzymeswasgreaterthanthatofsingle-displaystrains,asmeasuredbymeanfluorescenceintensity(datanotshown).ThisresultindicatedthatthesumofthenumberofBGL1,EGII,andCBHIImoleculesinacodisplaystrainislargerthanthatseeninasingle-displaystrain.

Inthehydrolysisexperiment,althoughthereducingsugarproducedbytheyeaststraincodisplayingEGII,CBHII,andBGL1wasnotdetectedinthesupernatantofthereactionmixture(Fig.3),adecreaseininsolublecellulosewasobserved(Fig.4).Thisisbecausethecellobioseproducedbythesyner-gisticreactionofEGIIandCBHIIisfurtherconvertedtoglucosebyBGL1andtheglucoseisimmediatelytakenupbycells.TheyeaststrainMT8-1/pBG211/pEG23u31H6/pFCBH2w3wasthusabletodirectlyproduceethanolfromamorphouscellulose(Fig.5).Ontheotherhand,theyeaststraincodis-playingBGL1andEGIIcouldnotfermentamorphouscellu-losetoethanol.Throughcodisplayofthethreetypesofcellu-lolyticenzyme,amorphouscellulosewassynergisticallyandsequentiallyhydrolyzedtoglucoseontheyeastcellsurfaceandimmediatelyconvertedtoethanolbyintracellularmetabolicenzymes.TheseresultsindicatethatcodisplayofCBHIIisveryeffectiveininducinghydrolysisanddirectfermentationofamorphouscellulose.Theethanolproductionwasalsoeffi-cient,astherewasnotimelaginthedecreaseininsolublecelluloseandtheethanolyieldwashigh(88.5%oftheoreticalyield).Moreover,glucosewasnotdetectedinthefermentationmedium,whichisadvantageoustopreventorminimizecon-tamination.

Asdescribedabove,efficientdirectfermentationofamor-phouscellulosetoethanolwasachievedbydevelopingayeaststraincodisplayingthreetypesofcellulolyticenzyme.Codis-playofCBHIIsignificantlyaffectedcellulosehydrolysis,sug-

Downloaded from http://aem.asm.org/ on November 21, 2011 by guest1212FUJITAETAL.gestingthatcombinationofcellulaseswithvariousfunctionsiseffectiveinproducingefficientdegradation.Furtherworkisneededtoanalyzethesynergisticreactionofthecellulasescodisplayedonthecellsurfaceandtoconstructayeastwhole-cellbiocatalystwithanimprovedabilitytocatalyzecellulosedegradationandfermentation.

ACKNOWLEDGMENTS

gaokaWethankYasushiMorikawa,CBHIIUniversitylegeandMotooofArai,Technology,DepartmentDepartmentforprovidingoftheBioengineering,cDNAofT.reeseiNa-rabbitofAgriculture,UniversityofOsakaofAgriculturalPrefecture,forChemistry,providingCol-theTechnologyThisanti-BGL1workDevelopmentwasantiserum.

alsofinancedOrganizationbythe(NEDO),NewEnergyTokyo,andJapan.

IndustrialREFERENCES

1.Aristidou,A.,andM.Penttila¨.2000.Metabolicengineeringapplicationstorenewableresourceutilization.Curr.Opin.Biotechnol.11:187–198.

2.Bothast,R.J.,N.N.Nichols,andB.S.Dien.1999.Fermentationswithnewrecombinantorganisms.Biotechnol.Prog.15:867–875.

3.Chen,H.,M.Hayn,andH.Esterbauer.1992.Purificationandcharacteriza-tionoftwoextracellular␤-glucosidasesfromTrichodermareesei.Biochim.Biophys.Acta1121:54–60.

4.Cho,K.M.,andY.J.Yoo.1999.NovelSSFprocessforethanolproductionfromL2612microcrystalline␦GC.J.Microbiol.celluloseBiotechnol.using9:the340␦–-integrated345.

recombinantyeast,5.Doi,R.H.,andY.Tamaru.2001.TheClostridiumcellulovoranscellulosome:anenzymecomplexwithplantcellwalldegradingactivity.Chem.Rec.1:24–32.

6.Dubois,M.,K.A.Gilles,J.K.Hamilton,P.A.Reberse,andF.Smith.1956.Colorimetricmethodfordeterminationofsugarsandrelatedsubstances.Anal.Chem.28:350–356.

7.Fujita,Y.,S.Takahashi,M.Ueda,A.Tanaka,H.Okada,Y.Morikawa,T.Kawaguchi,M.Arai,H.Fukuda,andA.Kondo.2002.Directandefficientproductionofethanolfromcellulosicmaterialwithayeaststraindisplayingcellulolyticenzymes.Appl.Environ.Microbiol.68:5136–5141.

8.Guedon,E.,M.Desvaux,andH.Petitdemange.2002.Improvementofcel-lulolyticpropertiesofClostridiumcellulolyticumbymetabolicengineering.Appl.Environ.Microbiol.68:53–58.

9.Henrissat,B.,H.Driguez,C.Viet,andM.Schu¨lein.1985.SynergismofcellulasesfromTrichodermareeseiinthedegradationofcellulose.Bio/Tech-nology3:722–726.

10.Ingram,L.O.,P.F.Gomez,X.Lai,M.Moniruzzaman,B.E.Wood,L.P.

Yomano,andS.W.York.1998.Metabolicengineeringofbacteriaforetha-nolproduction.Biotechnol.Bioeng.58:204–214.

11.Lipke,P.N.,D.Wojciechowicz,andJ.Kurjan.1989.AG␣1isthestructural

genefortheSaccharomycescerevisiae␣-agglutinin,acellsurfaceglycopro-teininvolvedincell-cellinteractionsduringmating.Mol.Cell.Biol.9:3155–3165.

12.Lynd,L.R.,C.E.Wyman,andT.U.Gerngross.1999.Biocommodityengi-neering.Biotechnol.Prog.15:777–793.

13.Medve,J.,J.Karlsson,D.Lee,andF.Tjerneld.1998.Hydrolysisofmicro-crystallineTrichodermacellulosereesei:adsorption,bycellobiohydrolasesugarproductionIandpattern,endoglucanaseandsynergismIIfromoftheenzymes.Biotechnol.Bioeng.59:621–634.14.Medve,J.,J.Sta˚hlberg,andF.Tjerneld.1994.Adsorptionandsynergismof

cellobiohydrolaseIandIIofTrichodermareeseiduringhydrolysisofmicro-crystallinecellulose.Biotechnol.Bioeng.44:1064–1073.

15.Murai,T.,M.Ueda,T.Kawaguchi,M.Arai,andA.Tanaka.1998.Assimi-lation␤ofcellooligosaccharidesbyacellsurface-engineeredyeastexpressingEnviron.-glucosidaseMicrobiol.andcarboxymethylcellulase64:4857–4861.

fromAspergillusaculeatus.Appl.16.Murai,T.,M.Ueda,Y.Shibasaki,N.Kamasawa,M.Osumi,T.Imanaka,

andA.Tanaka.1999.Developmentofanarmingyeaststrainforefficientutilizationofstarchbyco-displayofsequentialamylolyticenzymesonthecellsurface.Appl.Microbiol.Biotechnol.51:65–70.

APPL.ENVIRON.MICROBIOL.

17.Okada,H.,K.Tada,T.Sekiya,K.Yokoyama,A.Takahashi,H.Tohda,H.

Kumagai,andY.Morikawa.1998.Molecularcharacterizationandheterol-ogousexpressionofthegeneencodingalow-molecular-massendoglucanasefromTrichodermareeseiQM9414.Appl.Environ.Microbiol.64:555–563.18.Okada,H.,T.Sekiya,K.Yokoyama,H.Tohda,H.Kumagai,andY.Mori-kawa.1998.EfficientsecretionofTrichodermareeseicellobiohydrolaseIIinSchizozaccharomycespombeandcharacterizationofitsproducts.Appl.Mi-crobiol.Biotechnol.49:301–308.19.Penttila¨,M.,P.Lehtovaara,H.Nevalainen,R.Bhikhabhai,andJ.Knowles.

1986.HomologybetweencellulasegenesofTrichodermareesei:completenucleotidesequenceoftheendoglucanaseIgene.Gene45:253–263.

20.Saloheimo,A.,B.Henrissat,A.-M.Hoffren,O.Teleman,andM.Penttila¨.

1994.Anovel,smallendoglucanasegene,egl5,fromTrichodermareeseiisolatedbyexpressioninyeast.Mol.Microbiol.13:219–228.21.Saloheimo,M.,P.Lehtovaara,M.Penttila¨,T.T.Teeri,J.Sta˚hlberg,G.

Johansson,G.Pettersson,M.Claeyssens,P.Tomme,andJ.K.C.Knowles.1988.EGIII,anewendoglucanasefromTrichodermareesei:thecharacter-izationofbothgeneandenzyme.Gene63:11–21.22.Saloheimo,M.,T.Nakari-Seta¨la¨,M.Tenkanen,andM.Penttila¨.1997.

cDNAcloningofaTrichodermareeseicellulaseanddemonstrationofendo-glucanaseactivitybyexpressioninyeast.Eur.J.Biochem.249:584–591.23.Shibasaki,S.,M.Ueda,K.Ye,K.Shimizu,N.Kamasawa,M.Osumi,andA.

Tanaka.2001.Creationofcellsurface-engineeredyeastthatdisplaydifferentfluorescentproteinsinresponsetotheglucoseconcentration.Appl.Micro-biol.Biotechnol.57:528–533.

24.Shibasaki,S.,M.Ueda,T.Iizuka,M.Hirayama,Y.Ikeda,N.Kamasawa,M.

Osumi,andA.Tanaka.2001.QuantitativeevaluationoftheenhancedgreenfluorescentproteindisplayedonthecellsurfaceofSaccharomycescerevisiaebyfluorometricandconfocallaserscanningmicroscopicanalyses.Appl.Microbiol.Biotechnol.55:471–475.

25.Shoham,Y.,R.Lamed,andE.A.Bayer.1999.Thecellulosomeconceptasan

efficientmicrobialstrategyforthedegradationofinsolublepolysaccharides.TrendsMicrobiol.7:275–281.

26.Sun,Y.,andJ.Cheng.2002.Hydrolysisoflignocellulosicmaterialsfor

ethanolproduction:areview.Bioresour.Technol.83:1–11.

27.Tajima,M.,Y.Nogi,andT.Fukasawa.1985.Primarystructureofthe

SaccharomycescerevisiaeGAL7gene.Yeast1:67–77.

28.Tomme,P.,H.VanTilbeurgh,G.Pettersson,J.VanDamme,J.Vandekerck-hove,J.Knowles,T.Teeri,andM.Claeyssens.1988.Studiesofthecellulo-lyticsystemofTrichodemareeseiQM9414:analysisofdomainfunctionintwocellobiohydrolasesbylimitedproteolysis.Eur.J.Biochem.170:575–581.29.Teeri,T.T.1997.Crystallinecellulosedegradation:newinsightintothe

functionofcellobiohydrolases.TrendsBiotechnol.15:160–167.

30.Teeri,T.T.,P.Lehtovaara,S.Kauppinen,I.Salovouri,andJ.Knowles.

1987.HomologousdomainsinTrichodermareeseicellulolyticenzymes:genesequenceandexpressionofcellobiohydrolaseII.Gene51:43–52.

31.VanRensburg,P.,W.H.VanZyl,andI.S.Pretorius.1996.Co-expressionof

aPhanerochaetechrysosporiumcellobiohydrolasegeneandaButyrivibriofibrisolvensendo-␤-1,4-glucanasegeneinSaccharomycescerevisiae.Curr.Genet.30:246–250.

32.VanRensburg,P.,W.H.VanZyl,andI.S.Pretorius.1998.Engineering

yeastforefficientcellulosedegradation.Yeast14:67–76.

33.Walseth,C.S.1952.Occurrenceofcellulasesinenzymepreparationsfrom

microorganisms.Tech.Assoc.PulpPaperInd.35:228–233.

34.Wood,B.E.,andL.O.Ingram.1992.Ethanolproductionfromcellobiose,

amorphouscellulose,andcrystallinecellulosebyrecombinantKlebsiellaoxy-tocacontainingchromosomallyintegratedZymomonasmobilisgenesforethanolproductionandplasmidsexpressingthermostablecellulasegenesfromClostridiumthermocellum.Appl.Environ.Microbiol.58:2103–2110.35.Wood,T.M.,andK.M.Bhat.1988.Methodsformeasuringcellulaseactiv-ities.MethodsEnzymol.160:87–112.

36.Woodward,J.1991.Synergismincellulosesystems.Bioresour.Technol.

36:67–75.

37.Zaldivar,J.,J.Nielsen,andL.Olsson.2001.Fuelethanolproductionfrom

lignocellulose:achallengeformetabolicengineeringandprocessintegra-tion.Appl.Microbiol.Biotechnol.56:17–34.

38.Zhou,S.,andL.O.Ingram.2001.Simultaneoussaccharificationandfer-mentationofamorphouscellulosetoethanolbyrecombinantKlebsiellaoxy-tocaSZ21withoutsupplementalcellulase.Biotechnol.Lett.23:1455–1462.

Downloaded from http://aem.asm.org/ on November 21, 2011 by guest

因篇幅问题不能全部显示,请点此查看更多更全内容