一、教学目标:
1、使学生结合具体情境,通过合作探究学习,经历观察、比较和探讨的数学研究过程,在已有知识基础上放手探讨商不变的规律。
2、通过本节课的教学,使学生理解掌握商的变化性质,会用商的变化性质对口算除法进行简便运算。
3、使学生体会数学来自生活实际的需要,进一步产生对数学的好奇心与兴趣,培养学生善于观察、勤于思考、勇于探索的习惯。
二、教学重难点:引导学生通过观察、比较、探讨发现并总结商的变化规律,获得探索规律的经验和方法。 三、教学流程
(一)创设情境,渗透规律。
师:老师先给大家讲一个故事:
师:在大圣和八戒护送流儿和小丫头回家的路上,还发生了一个故事。我给大家讲讲?话说他们此去长安,路途遥远,流儿就给大家摘了许多的桃子充饥。大圣深知八戒贪吃,就规定八戒:给你6个桃子,平均分3天吃完。八戒掐指一算,每天才能吃2个。“啊,不行不行,这我每天吃的也太少了!”大圣又说:“那好吧,我给你12个桃子,平均分6天吃完。怎么样?”八戒挠挠头,试探着说:“大圣,再多给点行不行?”大圣说:“好吧好吧,那我给你60个桃子,平均分30天吃完,这回总可以了吧?”八戒觉得占了大便宜,开心地笑了,大圣也笑了。看看,同学们也笑了。那笑中要有思考:谁是聪明的一笑呢?为什么? 接下来,我们就去好好的研究研究。 (二)自主探究,发现规律。(先检查导学案) 师:观察这些算式,说说你发现了什么? 生:我发现三个算式的商都是4。
师:商都是4,也就是说商没有——(变)。
师:商没有变,那么哪些量在变呢?(被除数和除数) 师:被除数和除数可以随便变吗?(不行,要有规律的变)
师:那被除数、除数怎样有规律的变化,才能保证商不变呢?这个重要的探究任务就交给同学们了,开始探究。
小组或同桌可以交流交流。 (三)汇报交流,感悟规律。
师:同学们,我们的汇报马上就要开始了。有人没写出什么发现吗?或者你在探究中出现了什么问题,咱们现在就一起来讨论交流一下。
师:同学们,他们这样写的,你们看懂了吗?好,现在请你们两个当课堂小先生,说一说你们这样写所表达的想法。看看他们说的和你们想的一样嘛?按照老师给你的汇报步骤来表述,可以吗?
1.请大家听我说——
2.我要特别强调的是——
3.大家还有什么要强调或补充的吗?(此处,组织学生将没有发现的变化探究完整。) 4.感谢大家听我的分享。
(衔接第三部分的探究)
师:用你们的火眼金睛认真观察,看看还有没有新的发现?组织小先生在黑板标画。
师:你说的真好!能把思路理清楚不容易,能把话说清楚更不容易,这就是数学逻辑,你的
逻辑观念非常清楚,希望同学们都能向他这样理清楚、说明白。
师:谢谢你们啊,老师都没有看出这些变化。你们观察的暨全面,又有顺序,非常好的学习习惯。
师:再问问同学们,还有补充的吗?好,那说第四句吧。
师:同学们,我们观察这一组算式,如果我是被除数,你们就——(除数),我乘2,你们——(乘2),商就不变。如果我乘5,你们——(乘5),商就不变。我除以10,你们——(除以10),商就不变。我除以5,你们——(除以5),商就不变。…… (四)举例实践,验证规律。
师:同学们,你们对于被除数、除数怎样有规律的变化,商才能不变,有点感觉了吗?有感觉的同学,请举手。我们好像已经发现了,商为什么不变的奥秘。但只有这一组算式啊,还不能足以证明我们的感觉就是对的。现在请同学们,依照你们的感觉,试着写出第二组、第三组算式,每一组里写两道算式就可以,看看这两道算式之间,是不是我们感觉的那种规律。写黑板上没有的数,有感觉的自己在练习纸上写出来,没有感觉的咱们聚到一起,老师帮帮你们。谁愿意到黑板上来写。(三名同学写,一名同学在旁边观察,看看其他人有没有什么困难,帮助帮助他们。)
随机采访,你写的算式,商变没变?
组织学生汇报自己所写的算式,重点强调,你的被除数和除数怎么变的,商变没变。 师:我们来看黑板上的两组,写的对不对,可不可以? (五)归纳提升,总结规律。
师:同学们,你们的感觉对了吗?(对了)如果老师让你继续写,你还能写出来吗?那我们就这样写下去,写下去,这样的算式能写完吗……今天写,明天写,……永远也写不完。 师:同学们,我们好不容易找到了感觉,发现了这一类算式的规律,我们得怎么办,才能让大家明白我们到底要表达什么呢?总不能一道算式一道算式的去写去讲啊? 生:把规律总结总结。 师:好,我们要总结的是什么?我们来看大屏幕,探究之初,老师就给大家留下了这个问题:被除数、除数怎样有规律的变化,才能保证商不变呢?我们研究的是,商如何不变的。请大家先独立思考,把你的发现,用你的方式给他总结出来。我们能不能把这一生都写不完的东西,总结、提炼一下,到底我发现了什么,商就不变了。听懂了吗?写下来吧。 学生自我总结,教师组织汇报交流。抓住典型,由小及大,由浅入深。
师:有没有不是用文字表达的?没关系,课下同学们可以试一试,可不可以不用文字表达。规律当中,还有不完善,需要补充的地方吗?(0除外)追问为什么0除外或留课下思考? 学生概括总结课题
(六)回顾反思,建构模型。
师:同学们,我们一起来回顾一下今天的探究过程。我们是怎么发现这个规律的?首先我们从故事开始,引发我们的思考。然后我们观察算式,发现规律。然后我们举些例子,验证规律。最后我们归纳概括,总结规律。
师:请同学们看大屏幕上的这两组算式,他们之间也存在着变化规律,课下请同学们用学到的这个方法探究他们的规律,好吗?
师:同学们,我们在前面学习了积的变化规律,今天又学习了商不变的规律,你还有什么新的猜想吗?(学生大胆猜想)既然是猜想,就免不了会有错误。但是猜想的过程,就是追求真理的过程。同学们在学习过程中,要敢于猜想,善于猜想,这样才能有所发现,有所创造!下课!
若还有时间,进行以下环节。
第二环节:“以不变应万变”——巩固商不变的规律 (一)基础练习,深化理解 1.口算应用,加深理解
根据每组题中第1题的商,写出下面两题的商。
72÷9= 36÷3= 80÷4= 720÷90= 360÷30= 800÷40= 7200÷900= 3600÷300= 8000÷400= 师:如果没有学习今天的内容,你会做720÷90=吗? 通过今天的学习,你知道这样做的道理了吗?
商不变的规律在除法口算中已经用过,在今后的学习中还会继续应用。 2. 在( )里填上适当的数,使计算简便。(题略) 3. 下面的说法对吗?对的在( )里画“√”。(题略) (七)总结:今天我们学习了什么?懂得了什么?
因篇幅问题不能全部显示,请点此查看更多更全内容