您的当前位置:首页常用的Python调试工具

常用的Python调试工具

2020-11-27 来源:小侦探旅游网
  以下是我做调试或分析时用过的工具的一个概览。如果你知道有更好的工具,请在评论中留言,可以不用很完整的介绍。

  日志

  没错,就是日志。再多强调在你的应用里保留足量的日志的重要性也不为过。你应当对重要的内容打日志。如果你的日志打的足够好的话,单看日志你就能发现问题所在。那样可以节省你大量的时间。

  如果一直以来你都在代码里乱用 print 语句,马上停下来。换用logging.debug。以后你还可以继续复用,或是全部停用等等。

  跟踪

  有时更好的办法是看执行了哪些语句。你可以使用一些IDE的调试器的单步执行,但你需要明确知道你在找那些语句,否则整个过程会进行地非常缓慢。
标准库里面的trace模块,可以打印运行时包含在其中的模块里所有执行到的语句。(就像制作一份项目报告)

python -mtrace –trace script.py

  这会产生大量输出(执行到的每一行都会被打印出来,你可能想要用grep过滤那些你感兴趣的模块).
比如:

python -mtrace –trace script.py | egrep '^(mod1.py|mod2.py)'

  调试器

  以下是如今应该人尽皆知的一个基础介绍:

import pdb
pdb.set_trace() # 开启pdb提示

  或者

try:
(一段抛出异常的代码)
except:
 import pdb
 pdb.pm() # 或者 pdb.post_mortem()

  或者(输入 c 开始执行脚本)

python -mpdb script.py

  在输入-计算-输出循环(注:REPL,READ-EVAL-PRINT-LOOP的缩写)环境下,可以有如下操作:

  • c or continue


  • q or quit


  • l or list, 显示当前步帧的源码


  • w or where,回溯调用过程


  • d or down, 后退一步帧(注:相当于回滚)


  • u or up, 前进一步帧


  • (回车), 重复上一条指令

  •   其余的几乎全部指令(还有很少的其他一些命令除外),在当前步帧上当作python代码进行解析。

      如果你觉得挑战性还不够的话,可以试下smiley,-它可以给你展示那些变量而且你能使用它来远程追踪程序。

      更好的调试器

    pdb的直接替代者:
    ipdb(easy_install ipdb) – 类似ipython(有自动完成,显示颜色等)
    pudb(easy_install pudb) – 基于curses(类似图形界面接口),特别适合浏览源代码

      远程调试器

      安装方式:

    sudo apt-get install winpdb

      用下面的方式取代以前的pdb.set_trace():

    import rpdb2
    rpdb2.start_embedded_debugger("secretpassword")

      现在运行winpdb,文件-关联

      不喜欢Winpdb?也可以直接包装PDB在TCP之上运行!

      这样做:

    import loggging
    
    class Rdb(pdb.Pdb):
     """
     This will run pdb as a ephemeral telnet service. Once you connect no one
     else can connect. On construction this object will block execution till a
     client has connected.
    
     Based on https://github.com/tamentis/rpdb I think ...
    
     To use this::
    
     Rdb(4444).set_trace()
    
     Then run: telnet 127.0.0.1 4444
     """
     def __init__(self, port=0):
     self.old_stdout = sys.stdout
     self.old_stdin = sys.stdin
     self.listen_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
     self.listen_socket.bind(('0.0.0.0', port))
     if not port:
     logging.critical("PDB remote session open on: %s", self.listen_socket.getsockname())
     print >> sys.__stderr__, "PDB remote session open on:", self.listen_socket.getsockname()
     sys.stderr.flush()
     self.listen_socket.listen(1)
     self.connected_socket, address = self.listen_socket.accept()
     self.handle = self.connected_socket.makefile('rw')
     pdb.Pdb.__init__(self, completekey='tab', stdin=self.handle, stdout=self.handle)
     sys.stdout = sys.stdin = self.handle
    
     def do_continue(self, arg):
     sys.stdout = self.old_stdout
     sys.stdin = self.old_stdin
     self.handle.close()
     self.connected_socket.close()
     self.listen_socket.close()
     self.set_continue()
     return 1
    
     do_c = do_cont = do_continue
    
    def set_trace():
     """
     Opens a remote PDB on first available port.
     """
     rdb = Rdb()
     rdb.set_trace()

      只想要一个REPL环境?试试IPython如何?

      如果你不需要一个完整齐全的调试器,那就只需要用一下的方式启动一个IPython即可:

    import IPython
    IPython.embed()

      标准linux工具

      我常常惊讶于它们竟然远未被充分利用。你能用这些工具解决很大范围内的问题:从性能问题(太多的系统调用,内存分配等等)到死锁,网络问题,磁盘问题等等。
    其中最有用的是最直接的strace,只需要运行 sudo strace -p 12345 或者 strace -f 指令(-f 即同时追踪fork出来的子进程),这就行了。输出一般会非常大,所以你可能想要把它重定向到一个文件以便作更多的分析(只需要加上 &> 文件名)。

      再就是ltrace,有点类似strace,不同的是,它输出的是库函数调用。参数大体相同。

      还有lsof 用来指出你在ltrace/strace中看到的句柄数值的意义。比如:

    lsof -p 12345

      更好的跟踪

      使用简单而可以做很多事情-人人都该装上htop!

    sudo apt-get install htop
    sudo htop

      现在找到那些你想要的进程,再输入:

    s - 代表系统调用过程(类似strace)
    L - 代表库调用过程(类似ltrace)
    l - 代表lsof

      监控

      没有好的持续的服务器监控,但是如果你曾遇到一些很诡异的情况,诸如为什么一切都运行的那么慢,那些系统资源都干什么去了,。。等这些问题,想弄明白却又 无处下手之际,不必动用iotop,iftop,htop,iostat,vmstat这些工具,就用dstat吧!它可以做之前我们提过的大部分工作可 以做的事情,而且也许可以做的更好!
    它会用一种紧凑的,代码高亮的方式(不同于iostat,vmstat)向你持续展示数据,你还经常可以看到过去的数据(不同于iftop,iostop,htop)。

      只需运行:

    dstat --cpu --io --mem --net --load --fs --vm --disk-util --disk-tps --freespace --swap --top-io --top-bio-adv

      很可能有一种更简短的方式来写上面这条命令,

      这是一个相当复杂而又强大的工具,但是这里我只提到了一些基本的内容(安装以及基础的命令)

    sudo apt-get install gdb python-dbg
    zcat /usr/share/doc/python2.7/gdbinit.gz > ~/.gdbinit

      用python2.7-dbg 运行程序:

    sudo gdb -p 12345

      现在使用:

    bt - 堆栈跟踪(C 级别)
    pystack - python 堆栈跟踪,不幸的是你需要有~/.gdbinit 并且使用python-dbg
    c - 继续

      发生段错误?用faulthandler !

      python 3.3版本以后新增的一个很棒的功能,可以向后移植到python2.x版本。只需要运行下面的语句,你就可以大抵知道什么原因引起来段错误。

    import faulthandler
    faulthandler.enable()

      内存泄露

      嗯,这种情况下有很多的工具可以使用,其中有一些专门针对WSGI的程序比如Dozer,但是我最喜欢的当然是objgraph。使用简单方便,让人惊讶!

      它没有集成WSGI或者其他,所以你需要自己去发现运行代码的方法,像下面这样:

    import objgraph
    objs = objgraph.by_type("Request")[:15]
    objgraph.show_backrefs(objs, max_depth=20, highlight=lambda v: v in objs,
    filename="/tmp/graph.png")
    Graph written to /tmp/objgraph-zbdM4z.dot (107 nodes)
    Image generated as /tmp/graph.png

      你会得到像这样一张图(注意:它非常大)。你也可以得到一张点输出。

      内存使用

      有时你想少用些内存。更少的内存分配常常可以使程序执行的更快,更好,用户希望内存合适好用)
    有许多可用的工具,但在我看来最好用的是pytracemalloc。与其他工具相比,它开销非常小(不需要依赖于严重影响速度的sys.settrace)而且输出非常详尽。但安装起来比较痛苦,你需要重新编译python,但有了apt,做起来也非常容易。

      只需要运行这些命令然后去吃顿午餐或者干点别的:

    apt-get source python2.7
    cd python2.7-*
    wget? https://github.com/wyplay/pytracemalloc/raw/master/python2.7_track_free_list.patch
    patch -p1 < python2.7_track_free_list.patch
    debuild -us -uc
    cd ..
    sudo dpkg -i python2.7-minimal_2.7*.deb python2.7-dev_*.deb

      接着安装pytracemalloc (注意如果你在一个virtualenv虚拟环境下操作,你需要在重新安装python后再次重建 – 只需要运行 virtualenv myenv)

    pip install pytracemalloc

      现在像下面这样在代码里包装你的应用程序

    import tracemalloc, time
    tracemalloc.enable()
    top = tracemalloc.DisplayTop(
     5000, # log the top 5000 locations
     file=open('/tmp/memory-profile-%s' % time.time(), "w")
    )
    top.show_lineno = True
    try:
     # code that needs to be traced
    finally:
     top.display()

      输出会像这样:

    2013-05-31 18:05:07: Top 5000 allocations per file and line
     #1: .../site-packages/billiard/_connection.py:198: size=1288 KiB, count=70 (+0),
    average=18 KiB
     #2: .../site-packages/billiard/_connection.py:199: size=1288 KiB, count=70 (+0),
    average=18 KiB
     #3: .../python2.7/importlib/__init__.py:37: size=459 KiB, count=5958 (+0),
    average=78 B
     #4: .../site-packages/amqp/transport.py:232: size=217 KiB, count=6960 (+0),
    average=32 B
     #5: .../site-packages/amqp/transport.py:231: size=206 KiB, count=8798 (+0),
    average=24 B
     #6: .../site-packages/amqp/serialization.py:210: size=199 KiB, count=822 (+0),
    average=248 B
     #7: .../lib/python2.7/socket.py:224: size=179 KiB, count=5947 (+0), average=30
    B
     #8: .../celery/utils/term.py:89: size=172 KiB, count=1953 (+0), average=90 B
     #9: .../site-packages/kombu/connection.py:281: size=153 KiB, count=2400 (+0),
    average=65 B
     #10: .../site-packages/amqp/serialization.py:462: size=147 KiB, count=4704
    (+0), average=32 B

      …

      很美,不是吗?

      补充:更多有关调试的内容见这里。

      原文链接: Ionel Cristian M?rie? 翻译: 伯乐在线 - 高磊

    显示全文