发布网友 发布时间:2022-04-20 00:16
共2个回答
热心网友 时间:2023-06-24 16:26
首先以下这些人是不适合做数据分析的,你属于哪一类呢?
相信假数据的
有很多时候,你总是会注意到呈现在你眼前的东西,那些精美绝伦的数据报告,那些与众不同的PPT,那些运用巧妙的文字。但是你似乎从来没有想过,这份报告背后付出的努力,我是如何进行数据采集的?这些数据只是样本是否可以代表整个行业呢?指标逻辑是什么?是我想要的吗?有什么区别?
其实对于很多不在自己范围内的数据都要去进行验证它的真实性,盲目的信从很容在过程中出错,比如媒体报道中的数据,什么离婚率、就业率、薪资等,要多来源验证、追问、质疑,有人会说,研究这些和我做的业务并没有关系,其实不是,这是一种对待数据的态度和习惯。
比如当你计算一个KPI完成率时,你会发现很多指标年年都好,但最终的财务指标基本没有任何变化,为什么?你质疑过吗?
考核的指标一般都是层层下压,为了完成KPI,基层也是绞尽脑汁。正所谓上有*下有对策,执行中必然会被扭曲。
不善于思考的
无论是做出多么完美的报表,依旧是以发现问题、解决问题为目的,通过这些看似杂乱无章的数据给我们带来一些价值,而这个价值的衡量其实就是思考,也就是你要用数据干什么?这才是数据的价值。
比如领导让你出一份经营分析报告,那你就要思考,由下往上思考,整体会涉及哪些指标,这些指标背后的含义是什么?这些指标能不能分类?分类的标准是什么?比如分类的标准是整体收入、发展趋势、用户表现、品类管理、库存状况等,然后再思考,例如整体收入这块,我要用这个分类的那些指标做对比、哪些做预测、那些做结构,分别要告诉决策者什么问题,目前好不好的问题?未来好不好的问题?现在现在的状态问题?这一来二去雏形不就有了吗?这种方式相对而言,难度较大,要会归纳总结,还要会给一级、二级、*框架造词。
还有一种是由上而下,这类思考取决于分析师的项目经验,做过的话,很容易提炼出诱人的大纲,再根据大纲敲定每个部分的分析框架,然后去思考选取那些指标,什么样式的分析方法更能传达你要表达的信息。
用不好excel的
可能会有人说,我们都用python好嘛,但是在没有Python之前呢?难道大家都不做数据分析的吗?
如果你仔细观察,你会发现5年以上的数据分析师,90%都用的excel,10%的工作环境可能是python、sql、spark、kettle等。
因为不是所有人,所有分析师都要面对所谓的海量数据,目前的趋势已经是数据统计智能化了,部分做专题分析会复杂一些,但一般大的专题是要一个团队一起完成的,比如简单的决策者+业务+it+分析师,所以很多时候IT是可以帮你搞定的。
不善于沟通的
数据分析师常常在程序员、决策者之间进行徘徊,在夹缝中求生要是没有有效的沟通,你很难去理解决策者到底想要什么?要是没有沟通你很难得到自己想要的数据形式?有数据和给你什么样式的数据差异很大的。
我见过很多人分析的框架和决策者想要的结合很完美,但找程序员要数据时,却没办法得到想要分析的数据。也见过很多人未能和IT准确有效的沟通,提出来一张自己用现有能力无法玩转的一张表。更见过很多元数据理解得很清楚,但输出分析框架时,受现有数据资源影响过大,打不开思维,导致输出与决策者完全不符的分析结果。
这是一个博弈的过程,一定要沟通,决策者的问题是没有边界的,但你、决策者、IT之间的沟通是可以让其有边境的。
动手能力差的
一方面是自学路上动手能力差,比如工具类的问题,经常问来问去,其实有时候自己动手搜索一下,你会发现世界真美好,这是搜索的强项,人脑记忆肯定干不过电脑。
另一个方面是自己缺乏练习,很多人学课程,看书,从来不自己操作,老想寻找一些面试题、某企业级数据集拿来分析一下,看看自己的水平,要对胃口的数据集其实很少的,即使有,也是美化版的,很多综合性的演练你还是学不到的,还不如随便爬一些数据,越乱越好(对练习工具操作有巨大好处),然后在现有数据的基础上看看可以分析出什么?希望告诉别人什么?需不需要再补充一些数据,让结论更有说服力,更细致一些。
要是仅仅是看,那你确实不适合做数据分析。
不复盘的
数据分析是一个很难成长的职业,有的人入行很多年还用的是入行时的那套分析逻辑,为何?
好的分析经验一定是复盘出来的,分析最终都是要看疗效的,那其实做业务分析的可以很直观看到自己输出对关键指标的影响。
热心网友 时间:2023-06-24 16:27
学大数据的一般都是专科及以上,具有统计学之类的知识,有一定的基础的,不然即使你报名学习了,但是因为基础为零,也是很难克服困难的,自动放弃还不如当初想清楚再学。
实际上,问题还有个潜台词是“什么人学习数据分析,会更容易取得成功(比如职业成功)”,这个要视乎你的兴趣、付出和机遇。但要做到出类拔萃,除了上面三点,还需要一点天赋,这里的机遇是指你遇到的职业发展平台、商业环境、导师和同事。借用管理大师德鲁克的话“管理是可以习得的”,管理并非是天生的,而数据分析能力,也可以后天提升。或许做到优秀,只需要你更加的努力+兴趣,而这个努力的过程,也包括你寻找机遇的部分。
数据分析师通常分两类,分工不同,但各有优势。
一类是在专门的挖掘团队里面从事数据挖掘和分析工作的。如果你能在这类专业团队学习成长,那是幸运的,但进入这类团队的门槛较高,需要扎实的数据挖掘知识、挖掘工具应用经验和编程能力。该类分析师更偏向技术线条,未来的职业通道可能走专家的技术路线。
另一类是下沉到各业务团队或者运营部门的数据分析师,成为业务团队的一员。他们工作是支撑业务运营,包括日常业务的异常监控、客户和市场研究、参与产品开发、建立数据模型提升运营效率等。该类型分析师偏向产品和运营,可以转向做运营和产品。