发布网友 发布时间:2022-04-20 12:26
共1个回答
热心网友 时间:2023-07-12 06:52
解:(1)过点A作AF⊥BC于F(1分)
在Rt△AFB中,∠AFB=90°,∠ABF=60°
∴AF=ABsin∠ABF=4sin60°=4× = BF=ABcos∠ABF=4cos60°=4×在Rt△AFC中,∠AFC=90°
∴ (1分)
(2)过点P作PG⊥BC于G
在Rt△BPG中,∠PGB=90°
∴ (1分)
如果△ABP和△BCE相似∵∠APB=∠EBC
又∵∠BAP=∠BCD>∠ECB(1分)
∴∠ABP=∠ECB
∴ 即
解得 (不合题意,舍去)
∴x=8(1分)
(3)1°当AE=AB=4时
∵AP∥BC∴
即 解得 (2分)
2°当BE=AB=4时
∵AP∥BC∴
即 解得 (不合题意,舍去)(2分)
3°在Rt△AFC中,∠AFC=90°
∵ 在线段FC上截取FH=AF
∴∠FAE>∠FAH=45°
∴∠BAE>45°+30°>60°=∠ABC>∠ABE
∴AE≠BE(1分)
综上所述,当△ABE是等腰三角形时, 或
追问第二问不全啊,看不懂哦追答下面的图片全