什么是矩阵可逆

发布网友

我来回答

4个回答

热心网友

证明矩阵可逆的方法如下

1、矩阵的秩小于n,那么这个矩阵不可逆,反之可逆;

2、矩阵行列式的值为0,那么这个矩阵不可逆,反之可逆;

3、对于齐次线性方程AX=0,若方程只有零解,那么这个矩阵可逆,反之若有无穷解则矩阵不可逆;

4、对于非齐次线性方程AX=b,若方程只有特解,那么这个矩阵可逆,反之若有无穷解则矩阵不可逆。

一、逆矩阵

设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。

注:E为单位矩阵。

二、定义

一个n阶方阵A称为可逆的,或非奇异的,如果存在一个n阶方阵B,使得AB=BA=E.

并称B是A的一个逆矩阵。不可逆的矩阵称为非奇异矩阵。A的逆矩阵记作A-1。

三、性质

1、可逆矩阵一定是方阵。

2、(唯一性)如果矩阵A是可逆的,其逆矩阵是唯一的。

3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。

4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)

5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。

6、两个可逆矩阵的乘积依然可逆。

7、矩阵可逆当且仅当它是满秩矩阵。

4、证明

1、逆矩阵是对方阵定义的,因此逆矩阵一定是方阵。

设B与C都为A的逆矩阵,则有B=C。

2、假设B和C均是A的逆矩阵,B=BI=B(AC)=(BA)C=IC=IC,因此某矩阵的任意两个逆矩阵相等。

3、由逆矩阵的唯一性,A-1的逆矩阵可写作(A-1)-1和A,因此相等。

4、矩阵A可逆,有AA-1=I 。(A-1) TAT=(AA-1)T=IT=I ,AT(A-1)T=(A-1A)T=IT=I

5、由可逆矩阵的定义可知,AT可逆,其逆矩阵为(A-1)T。而(AT)-1也是AT的逆矩阵,由逆矩阵的唯一性,因此(AT)-1=(A-1)T。

1)在AB=O两端同时左乘A-1(BA=O同理可证),得A-1(AB)=A-1O=O

而B=IB=(AA-1)B=A-1(AB),故B=O

2)由AB=AC(BA=CA同理可证),AB-AC=A(B-C)=O,等式两边同左乘A-1,因A可逆AA-1=I 。

得B-C=O,即B=C。

热心网友

矩阵A为n阶方阵,若存在n阶矩阵B,使得矩阵A、B的乘积为单位阵,则称A为可逆阵,B为A的逆矩阵。若方阵的逆阵存在,则称为可逆矩阵或非奇异矩阵,且其逆矩阵唯一。

中文名
可逆矩阵
外文名
invertible matrix
别称
非奇异矩阵
快速
导航
性质

常用方法
定义
设是数域,,若存在,使得,为单位阵,则称为可逆阵,为的逆矩阵,记为。若方阵的逆阵存在,则称为可逆矩阵或非奇异矩阵。[1]
性质
(1)若为可逆矩阵,则的逆矩阵是唯一的。
(2)设、是数域上的阶矩阵,。
①若可逆,则和也可逆,且,;
②若可逆,则可逆 ,且;
③、均可逆 。[1]
常用方法
(1)判断或证明可逆的常用方法:
①证明;
②找一个同阶矩阵,验证;
③证明的行向量(或列向量)线性无关。
(2)求的方法:
①公式法:,其中为矩阵的伴随矩阵。
②初等变换法:对作初等变换,将化为单位阵,单位矩阵就化为。

热心网友

在线性代数中,给定一个
n
阶方阵A,若存在一n
阶方阵B
使得AB=BA=In(或AB=In、BA=In
任满足一个),其中In
为n
阶单位矩阵,则称A
是可逆的,且B
是A
的逆阵,记作
A^(-1)。
若方阵A
的逆阵存在,则称A
为非奇异方阵或可逆方阵。

热心网友

答案是a,至少有一个不可逆。
b选项,如 a
、b均可逆,则ab可逆;
c选项,a
、b可以都不可逆,那么ab也不可逆;
d选项, a
、b中有一个不可逆即可保证ab不可逆。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com