发布网友 发布时间:2022-04-22 03:29
共1个回答
热心网友 时间:2023-10-05 23:47
在微积分,驻点(StationaryPoint)又称为平稳点、稳定点或临界点(CriticalPoint)是函数的一阶导数为零,即在“这一点”,函数的输出值停止增加或减少。
函数的驻点的定义:函数的一阶导数为0的点(驻点也称为稳定点,临界点)。
1、对于多元函数,驻点是所有一阶偏导数都为零的点。即在“这一点”,函数的输出值停止增加或减少。驻点不一定是极值点,极值点也不一定是驻点。驻点与拐点,图像的驻点都是局部极大值或局部极小值。
2、对于一维函数的图像,驻点的切线平行于x轴。对于二维函数的图像,驻点的切平面平行于xy平面。驻点并不是点,而是和极值点相似,代表着这一点的x值。
3、拐点是导数符号发生变化的点。拐点点可以是相对最大值或相对最小值(也称为局部最小值和最大值)。如果函数是可微分的,那么拐点是一个固定点;然而并不是所有的固定点都是拐点。
4、如果函数是两次可微分的,则不转动点的固定点是水平拐点。例如,函数x^3在x=0处有一个固定点,也是拐点,但不是转折点。